版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届辽宁省铁岭市六校高一数学第一学期期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则的值为()A. B.C.或 D.2.函数图象一定过点A.(0,1) B.(1,0)C.(0,3) D.(3,0)3.函数的部分图象如图示,则将的图象向右平移个单位后,得到的图象解析式为()A. B.C. D.4.下列函数中,同时满足:①在上是增函数,②为奇函数,③最小正周期为的函数是()A. B.C. D.5.已知集合,,若,则实数的取值范围是()A. B.C. D.6.已知,则下列不等式一定成立的是()A. B.C. D.7.若α=-2,则α的终边在()A.第一象限 B.第二象限C.第三象限 D.第四象限8.设,,则()A. B.C. D.9.若且则的值是.A. B.C. D.10.已知某种树木的高度(单位:米)与生长年限t(单位:年,)满足如下的逻辑斯谛(Logistic)增长模型:,其中为自然对数的底数,设该树栽下的时刻为0,则该种树木生长至3米高时,大约经过的时间为()A.2年 B.3年C.4年 D.5年二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,的最大值为3,最小值为2,则实数的取值范围是________.12.经过,两点的直线的倾斜角是__________.13.定义在上的奇函数满足:对于任意有,若,则的值为__________.14.若函数(常数),对于任意两个不同的、,当、时,均有(为常数,)成立,如果满足条件的最小正整数为,则实数的取值范围是___________.15.已知,,则___________(用a、b表示).16.定义域为的奇函数,当时,,则关于的方程所有根之和为,则实数的值为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设在区间单调,且都有(1)求的解析式;(2)用“五点法”作出在的简图,并写出函数在的所有零点之和.18.如图,某园林单位准备绿化一块直径为BC的半圆形空地,外的地方种草,的内接正方形PQRS为一水池,其余的地方种花.若,,设的面积为,正方形PQRS的面积为.(1)用a,表示和;(2)当a为定值,变化时,求的最小值,及此时的值.19.如图,某园林单位准备绿化一块直径为的半圆形空,外的地方种草,的内接正方形为一水池,其余的地方种花,若,,,设的面积为,正方形的面积为(1)用表示和;(2)当变化时,求的最小值及此时角的大小.20.某网上电子商城销售甲、乙两种品牌的固态硬盘,甲、乙两种品牌的固态硬盘保修期均为3年,现从该商城已售出的甲、乙两种品牌的固态硬盘中各随机抽取50个,统计这些固态硬盘首次出现故障发生在保修期内的数据如下:型号甲乙首次出现故障的时间x(年)硬盘数(个)212123假设甲、乙两种品牌的固态硬盘首次出现故障相互独立.(1)从该商城销售的甲品牌固态硬盘中随机抽取一个,试估计首次出现故障发生在保修期内的概率;(2)某人在该商城同时购买了甲、乙两种品牌的固态硬盘各一个,试估计恰有一个首次出现故障发生在保修期的第3年(即)的概率.21.如图,在四棱锥中,底面为正方形,底面,该四棱锥的正视图和侧视图均为腰长为6的等腰直角三角形.(1)画出相应的俯视图,并求出该俯视图的面积;(2)求证:;(3)求四棱锥外接球的直径.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】分别令和,根据集合中元素的互异性可确定结果.【详解】若,则,不符合集合元素的互异性;若,则或(舍),此时,符合题意;综上所述:.故选:A.2、C【解析】根据过定点,可得函数过定点.【详解】因为在函数中,当时,恒有,函数的图象一定经过点,故选C.【点睛】本题主要考查指数函数的几何性质,属于简单题.函数图象过定点问题主要有两种类型:(1)指数型,主要借助过定点解答;(2)对数型:主要借助过定点解答.3、D【解析】由图像知A="1,",,得,则图像向右移个单位后得到的图像解析式为,故选D4、D【解析】根据三角函数的图像和性质逐项分析即可求解.【详解】A中的最小正周期为,不满足;B中是偶函数,不满足;C中的最小正周期为,不满足;D中是奇函数﹐且周期,令,∴,∴函数的递增区间为,,∴函数在上是增函数,故D正确.故选:D.5、A【解析】集合表示到的线段,集合表示过定点的直线,,说明线段和过定点的直线有交点,由此能求出实数的取值范围【详解】由题意可得,集合表示到的线段上的点,集合表示恒过定点的直线.∵∴线段和过定点的直线有交点∴根据图像得到只需满足,或故选A.【点睛】本题考查交集定义等基础知识,考查函数与方程思想、数形结合思想,是基础题.解答本题的关键是理解集合表示到的线段,集合表示过定点的直线,再通过得出直线与线段有交点,通过对应的斜率求解.6、B【解析】对于ACD,举例判断,对于B,分两种情况判断详解】对于A,若时,满足,而不满足,所以A错误,对于B,当时,则一定成立,当时,由,得,则,所以B正确,对于C,若时,满足,而不满足,所以C错误,对于D,若时,则满足,而不满足,所以D错误,故选:B7、C【解析】根据角的弧度制与角度制之间的转化关系可得选项.【详解】因为1rad≈57.30°,所以-2rad≈-114.60°,故α的终边在第三象限故选:C.8、A【解析】由对数函数的图象和性质知,,则.又因为,根据已知可算出其取值范围,进而得到答案.【详解】解:因为,,所以,又+,所以,所以.故选:A.9、C【解析】由题设,又,则,所以,,应选答案C点睛:角变换是三角变换中的精髓,也是等价化归与转化数学思想的具体运用,求解本题的关键是巧妙地将一个角变为已知两角的差,再运用三角变换公式进行求解.10、C【解析】根据题意,列方程,即可求解.【详解】由题意可得,令,即,解得:t=4.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】画出函数的图像,对称轴为,函数在对称轴的位置取得最小值2,令,可求得,或,进而得到参数范围.【详解】函数的图象是开口朝上,且以直线为对称的抛物线,当时,函数取最小值2,令,则,或,若函数在上的最大值为3,最小值为2,则,故答案为:.12、【解析】经过,两点的直线的斜率是∴经过,两点的直线的倾斜角是故答案为13、【解析】由可得,则可化简,利用可得,由是在上的奇函数可得,由此【详解】由题,因为,所以,由,则,则,因为,令,则,所以,因为是在上的奇函数,所以,所以,故答案:0【点睛】本题考查函数奇偶性、周期性的应用,考查由正切值求正、余弦值14、【解析】分析可知对任意的、且恒成立,且对任意的、且有解,进而可得出关于实数的不等式组,由此可解得实数的取值范围.详解】,因为,由可得,由题意可得对任意的、且恒成立,且对任意的、且有解,即,即恒成立,或有解,因为、且,则,若恒成立,则,解得;若或有解,则或,解得或;因此,实数的取值范围是.故答案为:.15、##【解析】根据对数的运算性质可得,再由指对数关系有,,即可得答案.【详解】由,又,,∴,,故.故答案为:.16、【解析】由题意,作函数y=f(x)与y=a的图象如下,结合图象,设函数F(x)=f(x)﹣a(0<a<1)的零点分别为x1,x2,x3,x4,x5,则x1+x2=﹣6,x4+x5=6,﹣log0.5(﹣x3+1)=a,x3=1﹣2a,故x1+x2+x3+x4+x5=﹣6+6+1﹣2a=1﹣2a,∵关于x的方程f(x)﹣a=0(0<a<1)所有根之和为1﹣,∴a=故答案为.点睛:函数的零点或方程的根的问题,一般以含参数的三次式、分式、以e为底的指数式或对数式及三角函数式结构的函数零点或方程根的形式出现,一般有下列两种考查形式:(1)确定函数零点、图象交点及方程根的个数问题;(2)应用函数零点、图象交点及方程解的存在情况,求参数的值或取值范围问题研究方程根的情况,可以通过导数研究函数的单调性、最值、函数的变化趋势等,根据题目要求,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的整体展现.同时在解题过程中要注意转化与化归、函数与方程、分类讨论思想的应用三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)图象见解析,所有零点之和为【解析】(1)依题意在时取最大值,在时取最小值,再根据函数在单调,即可得到,即可求出,再根据函数在取得最大值求出,即可求出函数解析式;(2)列出表格画出函数图象,再根据函数的对称性求出零点和;【小问1详解】解:依题意在时取最大值,在时取最小值,又函数在区间单调,所以,即,又,所以,由得,即,又因为,所以,,所以.【小问2详解】解:列表如下0001所以函数图象如下所示:由图知的一条对称轴为有两个实数根,记为,则由对称性知,所以所有实根之和为.18、(1);(2)当时,的值最小,最小值为【解析】(1)利用已知条件,根据锐角三角形中正余弦的利用,即可表示出和;(2)根据题意,将表示为的函数,利用倍角公式对函数进行转化,利用换元法,借助对勾函数的单调性,从而求得最小值.【详解】(1)在中,,所以;设正方形的边长为x,则,,由,得,解得;所以;(2),令,因为,所以,则,所以;设,根据对勾函数的单调性可知,在上单调递减,因此当时,有最小值,此时,解得;所以当时,的值最小,最小值为.【点睛】本题考查倍角公式的使用,三角函数在锐角三角形中的应用,以及利用对勾函数的单调性求函数的最值,涉及换元法,属综合性中档题.19、(1);(2)最小值【解析】(1)在中,可用表示,从而可求其面积,利用三角形相似可得的长度,从而可得.(2)令,从而可得,利用的单调性可求的最小值.【详解】(1)在中,,所以,.而边上的高为,设斜边上的为,斜边上的高为,因,所以,故,故,.(2),令,则.令,设任意的,则,故为减函数,所以,故,此时即.【点睛】直角三角形中的内接正方形的问题,可借助于解直角三角形和相似三角形得到各边与角的关系,三角函数式的最值问题,可利用三角变换化简再利用三角函数的性质、换元法等可求原三角函数式的最值.20、(1);(2)【解析】(1)由频率表示概率即可求出;(2)先分别求出从甲、乙两种品牌随机抽取一个,首次出现故障发生在保修期的第3年的概率,即可求出恰有一个首次出现故障发生在保修期的第3年的概率.【详解】解:(1)在图表中,甲品牌的个样本中,首次出现故障发生在保修期内的概率为:,设从该商城销售的甲品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期内为事件,利用频率估计概率,得,即从该商城销售的甲品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期内的概率为:;(2)设从该商城销售的甲品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期的第3年为事件,从该商城销售的乙品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期的第3年为事件,利用频率估计概率,得:,则,某人在该商城同时购买了甲、乙两种品牌的固态硬盘各一个,恰有一个首次出现故障发生在保修期的第3年的概
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 从“考核者”到“赋能者”:医院绩效沟通的角色转型
- 小学英语口语教学中交际策略的课题报告教学研究课题报告
- 2025年河北正定师范高等专科学校马克思主义基本原理概论期末考试笔试题库
- 2024年湖南农业大学马克思主义基本原理概论期末考试模拟试卷
- 2025年石家庄学院马克思主义基本原理概论期末考试参考题库
- 2025年上海开放大学马克思主义基本原理概论期末考试笔试真题汇编
- 2024年桂林理工大学博文管理学院马克思主义基本原理概论期末考试真题汇编
- 浙江省宁波市2025年七年级上学期期末考试英语试题附答案
- 2025年桂林理工大学博文管理学院马克思主义基本原理概论期末考试笔试题库
- 2025年江苏食品药品职业技术学院马克思主义基本原理概论期末考试笔试题库
- 2026届江苏省常州市高一上数学期末联考模拟试题含解析
- 艺考机构协议书
- 2026年农业科技领域人才选拔与专业技能考核要点解析
- 《生态环境重大事故隐患判定标准》解析
- 2025年度吉林省公安机关考试录用特殊职位公务员(人民警察)备考笔试试题及答案解析
- 2025年中国作家协会所属单位公开招聘工作人员13人备考题库及一套参考答案详解
- 走进歌乐山课件
- 茶叶对外贸易科普
- 青海西宁市2024-2025学年七年级上学期末调研测英语试卷
- 2025年度科室护士长工作总结与2026年工作计划
- GB/T 16927.1-2011高电压试验技术第1部分:一般定义及试验要求
评论
0/150
提交评论