版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
成都实验中学2026届数学高二上期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的导函数的图像如图所示,则()A.为的极大值点B.为的极大值点C.为的极大值点D.为的极小值点2.已知直线与直线垂直,则实数a为()A. B.或C. D.或3.为了防控新冠病毒肺炎疫情,某市疾控中心检测人员对外来入市人员进行核酸检测,人员甲、乙均被检测.设命题为“甲核酸检测结果为阴性”,命题为“乙核酸检测结果为阴性”,则命题“至少有一位人员核酸检测结果不是阴性”可表示为()A. B.C. D.4.已知圆柱的表面积为定值,当圆柱的容积最大时,圆柱的高的值为()A.1 B.C. D.25.若抛物线的准线方程是,则抛物线的标准方程是()A. B.C. D.6.抛掷两枚硬币,若记出现“两个正面”“两个反面”“一正一反”的概率分别为,,,则下列判断中错误的是().A. B.C. D.7.已知直线:恒过点,过点作直线与圆:相交于A,B两点,则的最小值为()A. B.2C.4 D.8.从装有2个红球和2个白球的袋内任取2个球,那么互斥而不对立的两个事件是()A.取出的球至少有1个红球;取出的球都是红球B.取出的球恰有1个红球;取出的球恰有1个白球C.取出的球至少有1个红球;取出的球都是白球D.取出的球恰有1个白球;取出的球恰有2个白球9.已知是和的等比中项,则圆锥曲线的离心率为()A. B.或2C. D.或10.在数列中,,,,则()A.2 B.C. D.111.已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,角终边上有一点,为锐角,且,则()A. B.C. D.12.在中,,满足条件的三角形的个数为()A.0 B.1C.2 D.无数多二、填空题:本题共4小题,每小题5分,共20分。13.以下数据为某校参加数学竞赛的名同学的成绩:,,,,,,,,,,,,,,,,,,,.则这人成绩的第百分位数可以是______14.已知,则正整数___________.15.直线的倾斜角的大小是_________.16.已知椭圆的左、右焦点分别为,,过点的直线与椭圆交于A,B两点,线段AB的长为5,若,那么△的周长是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)新冠肺炎疫情发生以来,我国某科研机构开展应急科研攻关,研制了一种新型冠状病毒疫苗,并已进入二期临床试验.根据普遍规律,志愿者接种疫苗后体内会产生抗体,人体中检测到抗体,说明有抵御病毒的能力.通过检测,用表示注射疫苗后的天数,表示人体中抗体含量水平(单位:,即:百万国际单位/毫升),现测得某志愿者的相关数据如下表所示:天数123456抗体含量水平510265096195根据以上数据,绘制了散点图.(1)根据散点图判断,与(a,b,c,d均为大于0的实数)哪一个更适宜作为描述y与x关系的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果求出y关于x的回归方程,并预测该志愿者在注射疫苗后的第10天的抗体含量水平值;(3)从这位志愿者前6天的检测数据中随机抽取4天的数据作进一步的分析,记其中的y值大于50的天数为X,求X的分布列与数学期望.参考数据:3.5063.673.4917.509.4912.95519.014023.87其中.参考公式:用最小二乘法求经过点,,,,的线性回归方程的系数公式,;.18.(12分)已知等差数列的前项和为,且,(1)求数列的通项公式;(2)若数列满足,求数列的前项和19.(12分)已知函数f(x)=x3﹣3ax2+2bx在x=处有极大值.(1)求a、b的值;(2)求f(x)在[0,2]上的值域.20.(12分)如图,在梯形中,,,平面,四边形为矩形,点为线段的中点,且(1)求证:平面平面;(2)若平面与平面所成锐二面角的余弦值为,则三棱锥F-ABC的体积为多少?21.(12分)设数列的前项和为,已知,且(1)证明:;(2)求22.(10分)请分别确定满足下列条件的直线方程(1)过点(1,0)且与直线x﹣2y﹣2=0垂直直线方程是(2)求与直线3x-4y+7=0平行,且在两坐标轴上截距之和为1的直线l的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由导函数的图像可得函数的单调区间,从而可求得函数的极值【详解】由的图像可知,在和上单调递减,在和上单调递增,所以为的极大值点,和为的极小值点,不是函数的极值点,故选:A2、B【解析】由题可得,即得.【详解】∵直线与直线垂直,∴,解得或.故选:B.3、D【解析】表示出和,直接判断即可.【详解】命题为“甲核酸检测结果为阴性”,则命题为“甲核酸检测结果不是阴性”;命题为“乙核酸检测结果为阴性”,则命题为“乙核酸检测结果不是阴性”.故命题“至少有一位人员核酸检测结果不是阴性”可表示为.故选D.4、B【解析】设圆柱的底面半径为,则圆柱底,圆柱侧,则可得,则圆柱的体积为,利用导数求出最大值,确定值.【详解】设圆柱的底面半径为,则圆柱底,圆柱侧,∴,∴,则圆柱的体积,∴,由得,由得,∴当时,取极大值,也是最大值,即故选:B【点睛】本题主要考查了圆柱表面积和体积的计算,考查了导数的实际应用,考查了学生的应用意识.5、D【解析】根据抛物线的准线方程,可直接得出抛物线的焦点,进而利用待定系数法求得抛物线的标准方程【详解】准线方程为,则说明抛物线的焦点在轴的正半轴则其标准方程可设为:则准线方程为:解得:则抛物线的标准方程为:故选:D6、A【解析】把抛掷两枚硬币的情况均列举出来,利用古典概型的计算公式,把,,算出来,判断四个选项的正误.【详解】两枚硬币,记为与,则抛掷两枚硬币,一共会出现的情况有四种,A正B正,A正B反,A反B正,A反B反,则,,,所以A错误,BCD正确故选:A7、A【解析】根据将最小值问题转化为d取得最大值问题,然后结合图形可解.【详解】将,变形为,故直线恒过点,圆心,半径,已知点P在圆内,过点作直线与圆相交于A,两点,记圆心到直线的距离为d,则,所以当d取得最大值时,有最小值,结合图形易知,当直线与线段垂直的时候,d取得最大值,即取得最小值,此时,所以.故选:A.8、D【解析】利用互斥事件、对立事件的定义逐一判断即可.【详解】A答案中的两个事件可以同时发生,不是互斥事件B答案中的两个事件可以同时发生,不是互斥事件C答案中的两个事件不能同时发生,但必有一个发生,既是互斥事件又是对立事件D答案中的两个事件不能同时发生,也可以都不发生,故是互斥而不对立事件故选:D【点睛】本题考查的是互斥事件和对立事件的概念,较简单.9、B【解析】由等比中项的性质可得,分别计算曲线的离心率.【详解】由是和的等比中项,可得,当时,曲线方程为,该曲线为焦点在轴上的椭圆,离心率,当时,曲线方程为,该曲线为焦点在轴上的双曲线,离心率,故选:B.10、A【解析】根据题中条件,逐项计算,即可得出结果.【详解】因为,,,所以,因此.故选:A.11、C【解析】根据角终边上有一点,得到,再根据为锐角,且,求得,再利用两角差的正切函数求解.【详解】因为角终边上有一点,所以,又因为为锐角,且,所以,所以,故选:C12、B【解析】利用正弦定理得到,进而或,由,得,即可求解【详解】由正弦定理得,,或,,,故满足条件的有且只有一个.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用百分位数的求法直接求解即可.【详解】解:将所给数据按照从小到大的顺序排列:,,,,,,,,,,,,,,,,,,,.数据量,∵是整数,∴故答案为:.14、6【解析】根据组合数和排列数的运算即可求得答案.【详解】由题意,,得.故答案为:6.15、【解析】由题意,即,∴考点:直线的倾斜角.16、16【解析】利用椭圆的定义可知,又△的周长,即可求焦点三角形的周长.【详解】由椭圆定义知:,所以△的周长为.故答案为:16.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2),4023.87(3)分布列答案见解析,数学期望:【解析】(1)由于这些点分布在一条曲线的附近,从而可选出回归方程,(2)设,,则建立w关于x的回归方程,然后根据公式和表中的数据求解回归方程即可,再将代入回归方程可求得在注射疫苗后的第10天的抗体含量水平值,(3)由题意可知x的可能取值为0,1,2,然后求对应的概率,从而可求出分布列和期望【小问1详解】根据散点图可知这些点分布在一条曲线的附近,所以更适合作为描述y与x关系的回归方程类型.【小问2详解】设,变换后可得,设,建立w关于x的回归方程,,所以所以w关于x的回归方程为,所以,当时,,即该志愿者在注射疫苗后的第10天的抗体含量水平值约为4023.87miu/mL.【小问3详解】由表格数据可知,第5,6天的y值大于50,故x的可能取值为0,1,2,,,,X的分布列为012.18、(1);(2).【解析】(1)设等差数列的公差为,根据已知条件可得出关于、的方程组,解出这两个量的值,即可求得数列的通项公式;(2)求得,利用裂项相消法可求得.【小问1详解】解:设等差数列公差为,,【小问2详解】解:,.19、(1)(2)【解析】(1)由于在点处有极小值,所以,从而可求出、的值;(2)由(1)可得,得在区间上单调递减,在区间上单调递增,从而可求出其值域.【小问1详解】因为函数在处有极大值,所以,①且②联立①②得:;【小问2详解】由(1)得,所以,由得;由得,所以,函数区间上单调递减,在区间上单调递增;又,所以在上的值域为.20、(1)证明见解析;(2)【解析】(1)先证线面垂直,再证面面垂直即可解决;(2)建立空间直角坐标系,以向量法去求平面与平面所成锐二面角的余弦值,列方程解得的长度,即可求得三棱锥F-ABC的体积.【小问1详解】在梯形中,,,,所以,,又,所以,所以,又所以,即又平面,平面,所以,又,,平面,所以平面,即平面又平面,则平面平面【小问2详解】由(1)知,,两两垂直,以为坐标原点,分别以直线,,为轴、轴、轴建立空间直角坐标系因为,,所以,令则,,,所以,设为平面的一个法向量,由,得解得,取,则,又是平面的一个法向量.设平面与平面所成锐二面角为,则,即解之得,又,故即21、(1)证明见解析;(2)【解析】(1)当时,由题可得,,两式子相减可得,即,然后验证当n=1时,命题成立即可;(2)通过求解数列的奇数项与偶数项的和即可得到其对应前n项和的通项公式.【详解】(1)由条件,对任意,有,因而对任意,有,两式相减,得,即,又,所以,故对一切,(2)由(1)知,,所以,于是数列是首项,公比为3的等比数列,数列是首项,公比为3的等比数列,所以,于是从而,综上所述,.【点睛】已知数列{an}的前n项和Sn,求数列的通项公式,其求解过程分为三步:(1)先利用a1=S1求出a1;(2)用n-1替换Sn中的n得到一个新的关系,利用an=Sn-Sn-1(n≥2)便可求出当n≥2时an的表达式;(3)对n=1时的结果进行检验,看是否符合n≥2时an的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n=1与n≥2两段来写.数列求和的常用方法有倒序相加法,错位相减法,裂项相消法,分组求和法,并项求和法等,可根据通项特点进行选用.22、(1)2x+y﹣2=0(2)3x-4y-12=0【解析】(1)设与直线x﹣2y﹣2=0垂直的直线方程为2x+y+m=0,把(1,0)代入2x+y+m=0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 县域基层医疗机构急诊急救能力调研
- 县域小龙虾连锁品牌营销调研
- 招商引资工作培训课件
- 价值工程优化医学教学资源配置与教学质量产出
- 以患者体验为核心健康教育品牌优化
- 代谢物转运体调控与肿瘤营养摄取
- 从基础到临床:SCLC个体化治疗的转化瓶颈
- 人工智能辅助转诊决策的法律责任
- 人工智能在药物研发知情同意中的应用挑战
- 产后出血标准化处理的药物应用指南
- 《DLT 587-2025继电保护和安全自动装置运行管理规程》专题研究报告深度解读
- 上海国盛证券股份有限公司招聘笔试题库2026
- 日本赛车行业现状分析报告
- 居间入股合同范本
- 2025年支行行长述职报告
- 劳务协议合同协议
- 仪表事故现场处理方案
- 夜间焊接施工方案(3篇)
- 辽宁省沈阳市皇姑区2024-2025学年八年级上学期英语期末试卷
- 2026年交管12123学法减分复习考试题库含答案(新)
- 2025交通行业高质量数据集建设指南
评论
0/150
提交评论