版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届平煤高级中学数学高一上期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数在区间的图象大致是()A. B.C. D.2.已知,且,则()A. B.C. D.3.由一个正方体截去一个三棱锥所得的几何体的直观图如图所示,则该几何体的三视图正确的是()A.B.C.D.4.若,且则与的夹角为()A. B.C. D.5.已知幂函数的图象过点,则的定义域为()A.R B.C. D.6.已知函数,则A.0 B.1C. D.27.已知函数的部分图象如图所示,若函数的图象由的图象向右平移个单位长度得到,则()A. B.C. D.8.圆过点的切线方程是()A. B.C. D.9.高斯是德国著名的数学家,近代数学奠基者之一,享有数学王子的美誉,他和阿基米德、牛顿并列为世界三大数学家,用其姓名命名的“高斯函数”为,其中表示不超过的最大整数,例如,已知函数,令函数,则的值域为()A.B.C.D.10.()A. B.1C.0 D.﹣1二、填空题:本大题共6小题,每小题5分,共30分。11.已知实数x、y满足,则的最小值为____________.12.=_______________.13.已知,则函数的最大值为___________,最小值为___________.14.已知扇形的周长为8,则扇形的面积的最大值为_________,此时扇形的圆心角的弧度数为________15.在中,若,则的形状一定是___________三角形.16.已知是幂函数,且在区间是减函数,则m=_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合A=x13≤log(1)求A,B;(2)求∁U(3)如果C=xx<a,且A∩C≠∅,求a18.已知函数f(x)=x2﹣2x+1+a在区间[1,2]上有最小值﹣1(1)求实数a的值;(2)若关于x的方程f(log2x)+1﹣2klog2x=0在[2,4]上有解,求实数k的取值范围;(3)若对任意的x1,x2∈(1,2],任意的p∈[﹣1,1],都有|f(x1)﹣f(x2)|≤m2﹣2mp﹣2成立,求实数m的取值范围.(附:函数g(t)=t在(0,1)单调递减,在(1,+∞)单调递增.)19.已知函数,且点在函数图象上.(1)求函数的解析式,并在图中的直角坐标系中画出函数的图象;(2)若方程有两个不相等的实数根,求实数的取值范围.20.有一批材料,可以建成长为240米的围墙.如图,如果用材料在一面靠墙的地方围成一块矩形的场地,中间用同样材料隔成三个相等面积的矩形,怎样围法才可取得最大的面积?并求此面积.21.如图,在四棱锥P-ABCD中,ABCD为平行四边形,AB⊥AC,PA⊥平面ABCD,且PA=AB=2,AC=1,点E是PD的中点.(1)求证:PB//平面AEC;(2)求D到平面AEC的距离.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】判断函数非奇非偶函数,排除选项A、B,在计算时的函数值可排除选项D,进而可得正确选项.【详解】因为,且,所以既不是奇函数也不是偶函数,排除选项A、B,因为,排除选项D,故选:C【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.2、B【解析】利用角的关系,再结合诱导公式和同角三角函数基本关系式,即可求解.【详解】,,.故选:B3、D【解析】因为有直观图可知,该几何体的正视图是有一条从左上角到右下角的对角线的正方形,俯视图是有一条从左下角角到右上角角的对角线的正方形,侧视图是有一条从左上角到右下角的对角线的正方形(对角线为虚线),所以只有选项D合题意,故选D.4、C【解析】因为,设与的夹角为,,则,故选C考点:数量积表示两个向量的夹角5、C【解析】设,点代入即可求得幂函数解析式,进而可求得定义域.【详解】设,因为的图象过点,所以,解得,则,故的定义域为故选:C6、B【解析】,选B.7、A【解析】结合图象利用五点法即可求得函数解析式.【详解】由图象可得解得,因为,所以.又因为,所以因为,所以,,即,.又因为,所以..故选:A.8、D【解析】先求圆心与切点连线的斜率,再利用切线与连线垂直求得切线的斜率结合点斜式即可求方程.【详解】由题意知,圆:,圆心在圆上,,所以切线的斜率为,所以在点处的切线方程为,即.故选:D.9、C【解析】先进行分离,然后结合指数函数与反比例函数性质求出的值域,结合已知定义即可求解【详解】解:因为,所以,所以,则的值域故选:C10、C【解析】直接利用诱导公式以及特殊角的三角函数求解即可.【详解】.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用基本不等式可得,即求.【详解】依题意,当且仅当,即时等号成立.所以的最小值为.故答案为:.12、【解析】解:13、①.②.【解析】利用对勾函数的单调性直接计算函数的最大值和最小值作答.【详解】因函数在上单调递增,在上单调递减,当时,函数在上单调递增,在上单调递减,即有当时,,而当时,,当时,,则,所以函数的最大值为,最小值为.故答案为:;14、①.4②.2【解析】根据扇形的面积公式,结合配方法和弧长公式进行求解即可.【详解】设扇形所在圆周的半径为r,弧长为l,有,,此时,,故答案为:;15、等腰【解析】根据可得,利用两角和的正弦公式展开,再逆用两角差的正弦公式化简,结合三角形内角的范围可得,即可得的形状.【详解】因,,所以,即,所以,可得:,因为,,所以所以,即,故是等腰三角形.故答案为:等腰.16、【解析】根据幂函数系数为1,得或,代入检验函数单调性即可得解.【详解】由是幂函数,可得,解得或,当时,在区间是减函数,满足题意;当时,在区间是增函数,不满足题意;故.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)A=2,8,(2)∁(3)2,+∞【解析】(1)根据函数y=log8x和函数y=(2)先求出集合A与集合B的交集,再求补集即可(3)根据集合∁和集合A的交集为空集,可直接求出a的取值范围【小问1详解】根据题意,可得:log8813≤log故有:A=函数y=2x在区间-∞,+∞综上,答案为:A=2,8,【小问2详解】由(1)可知:A=2,8,则有:A∩B=故有:∁故答案为:-∞,2【小问3详解】由于A=x2≤x≤8,且A∩C≠∅则有:a>2,故a的取值范围为:2,+∞故答案为:2,+∞18、(1)﹣1;(2)0≤t;(3)m≤﹣3或m≥3【解析】(1)由二次函数的图像与性质即可求解.(2)采用换元把方程化为t2﹣(2+2k)t+1=0在[1,2]上有解,然后再分离参数法,化为t与2+2k在[1,2]上有交点即可求解.(3)求出|f(x1)﹣f(x2)|max<1,把问题转化为1≤m2﹣2mp﹣2恒成立,研究关于的函数h(p)=﹣2mp+m2﹣3,使其最小值大于零即可.【详解】(1)函数f(x)=x2﹣2x+1+a对称轴为x=1,所以区间[1,2]上f(x)min=f(1)=a,由根据题意函数f(x)=x2﹣2x+1+a在区间[1,2]上有最小值﹣1所以a=﹣1(2)由(1)知f(x)=x2﹣2x,若关于x的方程f(log2x)+1﹣2k•log2x=0在[2,4]上有解,令t=log2x,t∈[1,2]则f(t)+1﹣2kt=0,即t2﹣(2+2k)t+1=0在[1,2]上有解,t2+2k在[1,2]上有解,令函数g(t)=t,在(0,1)单调递减,在(1,+∞)单调递增所以g(1)≤2+2k≤g(2),即2≤2+2t,解得0≤t(3)若对任意的x1,x2∈(1,2],|f(x1)﹣f(x2)|max<1,若对任意的x1,x2∈(1,2],任意的p∈[﹣1,1],都有|f(x1)﹣f(x2)|≤m2﹣2mp﹣2成立,则1≤m2﹣2mp﹣2,即m2﹣2mp﹣3≥0,令h(p)=﹣2mp+m2﹣3,所以h(﹣1)=2m+m2﹣3≥0,且h(1)=﹣2m+m2﹣3≥0,解得m≤﹣3或m≥3【点睛】本题主要考查了二次函数的图像与性质、函数与方程以及不等式恒成立问题,综合性比较强,需有较强的逻辑推理能力,属于难题.19、(1),图象见解析(2)【解析】(1)先根据点在函数的图象上求出,再分段画出函数的图象;(2)将问题转化为直线与函数的图象有两个公共点,在同一坐标系中作出图象,利用图象进行求解.【小问1详解】解:因为点在函数的图象上,所以,解得,即,其图象如图所示:【小问2详解】解:将化为,因为方程有两个不相等的实数根,所以直线与函数的图象有两个公共点,在同一坐标系中作出直线与函数的图象(如图所示),由图象,得,即,即的取值范围是.20、当面积相等的小矩形的长为时,矩形面积最大,【解析】设每个小矩形的长为,宽为,依题意可知,代入矩形的面积公式,根据基本不等式即可求得矩形面积的最大值.【详解】设每个小矩形的长为,宽为,依题意可知,,当且仅当取等号,所以时,.【点睛】本题主要考查函数最值的应用,考查了学生分析问题和解决问题的能力.21、(1)证明见解析(2)【解析】(1)连接交于,连接,则可得,再由E是PD的中点,则可利用三角形中位线定理可得∥,然后利用线面平行的判定定理可证得结论;(2)由已知条件可证明,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 产业研究报告-中国牙齿美容行业发展现状、市场规模、投资前景分析(智研咨询)
- 2026年金融分析师专业能力测试与常见问题解析
- 2026年财务总监预算考核办法含答案
- 2026年科研机构研究员面试题库及答案
- 2026年云计算领域专家面试题及答案
- 2026年农业技术推广专员面试问题解析
- 2026年洗衣店长面试题及答案
- 2026年项目经理面试题及项目管理知识要点含答案
- 2026年交接班操作考核标准
- 2026年程序设计面试常见技术问题解析
- 2021-2022学年天津市滨海新区九年级上学期物理期末试题及答案
- 江苏省苏州市、南京市九校2025-2026学年高三上学期一轮复习学情联合调研数学试题(解析版)
- 2026年中国医学科学院医学实验动物研究所第三批公开招聘工作人员备考题库及答案详解一套
- 2025年幼儿园教师业务考试试题及答案
- 国家开放大学《Python语言基础》形考任务4答案
- (自2026年1月1日起施行)《增值税法实施条例》重点解读
- 2026春小学科学教科版(2024)三年级下册《4.幼蚕在生长》教学设计
- 管道安装协议2025年
- 2026年护理部工作计划
- 某项目盘扣式满堂脚手架搭设施工方案
- 食管癌影像学表现及TNM分期课件
评论
0/150
提交评论