江苏省明德实验学校2026届数学高一上期末调研模拟试题含解析_第1页
江苏省明德实验学校2026届数学高一上期末调研模拟试题含解析_第2页
江苏省明德实验学校2026届数学高一上期末调研模拟试题含解析_第3页
江苏省明德实验学校2026届数学高一上期末调研模拟试题含解析_第4页
江苏省明德实验学校2026届数学高一上期末调研模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省明德实验学校2026届数学高一上期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合A={1,3,5},B={1,2,3},则A∪B=()A. B.C.3, D.2,3,2.已知角的顶点为坐标原点,始边为轴正半轴,终边经过点,则()A. B.C. D.3.《九章算术》中“方田”章给出了计算弧田面积时所用的经验公式,即弧田面积=×(弦×矢+矢).弧田(如图1)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为,半径为2米的弧田(如图2),则这个弧田面积大约是()平方米.(,结果保留整数)A.2 B.3C.4 D.54.已知,且满足,则值A. B.C. D.5.已知命题,则命题的否定为()A. B.C. D.6.A B.C.1 D.7.已知,,,则的大小关系为A. B.C. D.8.设向量不共线,向量与共线,则实数()A. B.C.1 D.29.O为正方体底面ABCD的中心,则直线与的夹角为A. B.C. D.10.已知,且,则的最小值为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设A为圆上一动点,则A到直线的最大距离为________12.若,其中,则的值为______13.若,则________.14.圆的圆心到直线的距离为______.15.已知函数,若关于的不等式在[0,1]上有解,则实数的取值范围为______16.当时,函数的值总大于,则的取值范围是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象经过点其中(1)求a的值;(2)若,求x的取值范围.18.已知函数最小正周期为.(1)求的值:(2)将函数的图象先向左平移个单位,然后向上平移1个单位,得到函数,若在上至少含有4个零点,求b的最小值.19.某淘宝商城在2017年前7个月的销售额(单位:万元)的数据如下表,已知与具有较好的线性关系.月份销售额(1)求关于的线性回归方程;(2)分析该淘宝商城2017年前7个月的销售额的变化情况,并预测该商城8月份的销售额.附:回归直线的斜率和截距的最小二乘估计公式分别为:,.20.已知函数,且(1)证明函数在上是增函数(2)求函数在区间上的最大值和最小值21.人类已进入大数据时代.目前数据量已经从级别越升到,,乃至级别.某数据公司根据以往数据,整理得到如下表格:时间2008年2009年2010年2011年2012年间隔年份(单位:年)01234全球数据量(单位:)0.50.751.1251.68752.53125根据上述数据信息,经分析后发现函数模型能较好地描述2008年全球产生的数据量(单位:)与间隔年份(单位:年)的关系.(1)求函数的解析式;(2)请估计2021年全球产生的数据量是2011年的多少倍(结果保留3位小数)?参考数据:,,,,,.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】直接利用集合运算法则得出结果【详解】因A=(1,3,5},B={1,2,3},所以则A∪B=2,3,,故选D【点睛】本题考查集合运算,注意集合中元素的的互异性,无序性2、A【解析】利用任意角的三角函数的定义,即可求得的值【详解】角的顶点为坐标原点,始边为轴正半轴,终边过点.由三角函数的定义有:.故选:A3、A【解析】先由已知条件求出,然后利用公式求解即可【详解】因为,所以,在中,,所以,所以,所以这个弧田面积为,故选:A4、C【解析】由可求得,然后将经三角变换后用表示,于是可得所求【详解】∵,∴,解得或∵,∴∴故选C【点睛】对于给值求值的问题,解答时注意将条件和所求值的式子进行适当的化简,然后合理地运用条件达到求解的目的,解题的关键进行三角恒等变换,考查变换转化能力和运算能力5、D【解析】由特称(存在)量词命题的否定是全称量词命题直接可得.【详解】由特称(存在)量词命题的否定是全称量词命题直接可得:命题的否定为:.故选:D6、A【解析】由题意可得:本题选择A选项.7、A【解析】利用利用等中间值区分各个数值的大小【详解】;;故故选A【点睛】利用指数函数、对数函数的单调性时要根据底数与的大小区别对待8、A【解析】由向量共线定理求解【详解】因为向量与共线,所以存在实数,使得,又向量不共线,所以,解得故选:A9、D【解析】推导出A1C1⊥BD,A1C1⊥DD1,从而D1O⊂平面BDD1,由此得到A1C1⊥D1O【详解】∵O为正方体ABCD﹣A1B1C1D1底面ABCD的中心,∴A1C1⊥BD,A1C1⊥DD1,∵BD∩DD1=D,∴A1C1⊥平面BDD1,∵D1O⊂平面BDD1,∴A1C1⊥D1O故答案为:D【点睛】本题考查与已知直线垂直的直线的判断,是中档题,做题时要认真审题,注意线面垂直的性质的合理运用10、C【解析】运用乘1法,可得由x+y=(x+1)+y﹣1=[(x+1)+y]•()﹣1,化简整理再由基本不等式即可得到最小值【详解】由x+y=(x+1)+y﹣1=[(x+1)+y]•1﹣1=[(x+1)+y]•2()﹣1=2(21≥3+47当且仅当x,y=4取得最小值7故选C【点睛】本题考查基本不等式的运用:求最值,注意乘1法和满足的条件:一正二定三等,考查运算能力,属于中档题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】求出圆心到直线的距离,进而可得结果.【详解】依题意可知圆心为,半径为1.则圆心到直线距离,则点直线的最大距离为.故答案:.12、;【解析】因为,所以点睛:三角函数求值三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.13、【解析】利用三角函数的诱导公式,化简得到原式,代入即可求解.【详解】因为,由故答案为:14、1【解析】利用点到直线的距离公式可得所求的距离.【详解】圆心坐标为,它到直线的距离为,故答案为:1【点睛】本题考查圆的标准方程、点到直线的距离,此类问题,根据公式计算即可,本题属于基础题.15、【解析】不等式在[0,1]上有解等价于,令,则.【详解】由在[0,1]上有解,可得,即令,则,因为,所以,则当,即时,,即,故实数的取值范围是故答案为【点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.16、或,【解析】由指数函数的图象和性质可得即可求解.【详解】因为时,函数的值总大于,根据指数函数的图象和性质可得,解得:或,故答案为:或,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据函数过点代入解析式,即可求得的值;(2)由(1)可得函数的解析式,结合函数的单调性求出x的取值范围.【详解】解:(1)∵函数的图象经过点,即,可得;(2)由(1)得,即,,【点睛】本题考查待定系数法求函数解析式,以及由指数函数的单调性解不等式,属于基础题.18、(1)1(2)【解析】(1)利用平方关系、二倍角余弦公式、辅助角公式化简函数解析式,然后根据周期公式即可求解;(2)利用三角函数的图象变换求出的解析式,然后借助三角函数的图象即可求解.【小问1详解】解:,因为函数的最小正周期为,即,所以;【小问2详解】解:由(1)知,由题意,函数,令,即,因为在上至少含有4个零点,所以,即,所以的最小值为.19、(1);(2)预测该商城8月份的销售额为126万元.【解析】(1)根据表格中所给数据及平均数公式可求出与的值从而可得样本中心点的坐标,求可得公式中所需数据,求出,再结合样本中心点的性质可得,进而可得关于的回归方程;(2)由(1)知,,故前个月该淘宝商城月销售量逐月增加,平均每月增加万,将,代入(1)中的回归方程,可预测该商城月份的销售额..试题解析:(1)由所给数据计算得,,,,,.所求回归方程为.(2)由(1)知,,故前7个月该淘宝商城月销售量逐月增加,平均每月增加10万.将,代入(1)中的回归方程,得.故预测该商城8月份的销售额为126万元.【方法点晴】本题主要考查线性回归方程求法与实际应用,属于中档题.求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.20、(1)证明见解析;(2)的最大值为,最小值为.【解析】(1)根据求出,求得,再利用函数单调性的定义,即可证得结论;(2)根据在上的单调性,求在上的最值即可.【详解】解:(1)因为,可得,解得,所以,任取,则,因为,所以,可得,即且,所以,即,所以在上是增函数;(2)由(1)知,在上是增函数,同理,任取时,,其中,故,即且,故,即,所以在上是减函数,故在上是减函数,在上是增函数,又,,所以的最大值为,最小值为.【点睛】方法点睛:利用定义证明函数单调性方法:(1)取值:设是该区间内的任意两个值,且;(2)作差变形:即作差,即作差,并通过因式分解、配方、有理化等方法,向有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论