海南省海口市华侨中学2026届高二上数学期末监测模拟试题含解析_第1页
海南省海口市华侨中学2026届高二上数学期末监测模拟试题含解析_第2页
海南省海口市华侨中学2026届高二上数学期末监测模拟试题含解析_第3页
海南省海口市华侨中学2026届高二上数学期末监测模拟试题含解析_第4页
海南省海口市华侨中学2026届高二上数学期末监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

海南省海口市华侨中学2026届高二上数学期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线的准线方程是A. B.C. D.2.如图,在四面体中,,,两两垂直,已知,,则直线与平面所成角的正弦值为()A. B.C. D.3.已知定义在R上的函数满足,且当时,,则下列结论中正确的是()A. B.C. D.4.已知命题p:,,则()A., B.,C., D.,5.若方程表示圆,则实数m的取值范围为()A B.C. D.6.如图在平行六面体中,与的交点记为.设,,,则下列向量中与相等的向量是()A. B.C. D.7.,则()A. B.C. D.8.参加抗疫的300名医务人员,编号为1,2,…,300.为了解这300名医务人员的年龄情况,现用系统抽样的方法从中抽取15名医务人员的年龄进行调查.若抽到的第一个编号为6,则抽到的第二个编号为()A.21 B.26C.31 D.369.已知直线与直线平行,则实数a值为()A.1 B.C.1或 D.10.已知,,则等于()A.2 B.C. D.11.已知椭圆的左、右焦点分别为,,焦距为,过点作轴的垂线与椭圆相交,其中一个交点为点(如图所示),若的面积为,则椭圆的方程为()A B.C. D.12.已知,分别为双曲线:的左,右焦点,以为直径的圆与双曲线的右支在第一象限交于点,直线与双曲线的右支交于点,点恰好为线段的三等分点(靠近点),则双曲线的离心率等于()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,则__________14.已知等差数列满足,,,则公差______15.已知等差数列的前n项和为,,,则______16.某人有楼房一栋,室内面积共计,拟分割成两类房间作为旅游客房,大房间每间面积为,可住游客4名,每名游客每天的住宿费100元;小房间每间面积为,可住游客2名,每名游客每天的住宿费150元;装修大房间每间需要3万元,装修小房间每间需要2万元.如果他只能筹款25万元用于装修,且假定游客能住满客房,则该人一天能获得的住宿费的最大值为___________元.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知双曲线(1)若,求双曲线的焦点坐标、顶点坐标和渐近线方程;(2)若双曲线的离心率为,求实数的取值范围18.(12分)在中,角A,B,C的对边分别为a,b,c,且求A和B的大小;若M,N是边AB上的点,,求的面积的最小值19.(12分)已知直线经过点,且满足下列条件,求相应的方程.(1)过点;(2)与直线垂直.20.(12分)已知椭圆的左,右焦点为,椭圆的离心率为,点在椭圆C上(1)求椭圆C的方程;(2)点T为椭圆C上的点,若点T在第一象限,且与x轴垂直,过T作两条斜率互为相反数的直线分别与椭圆C交于点M,N,探究直线的斜率是否为定值?若为定值,请求之;若不为定值,请说明理由21.(12分)新冠疫情下,有一学校推出了食堂监管力度的评价与食品质量的评价系统,每项评价只有合格和不合格两个选项,师生可以随时进行评价,某工作人员利用随机抽样的方法抽取了200位师生的信息,发现对监管力度满意的占75%,对食品质量满意的占60%,其中对监管力度和食品质量都满意的有80人.(1)完成列联表,试问:是否有99%的把握判断监管力度与食品质量有关联?监督力度情况食品质量情况对监督力度满意对监督力度不满意总计对食品质量满意80对食品质量不满意总计200(2)为了改进工作作风,针对抽取的200位师生,对监管力度不满意的人抽取3位征求意见,用X表示3人中对监管力度与食品质量都不满意的人数,求X的分布列与均值.参考公式:,其中.参考数据:①当时,有90%的把握判断变量A、B有关联;②当时,有95%的把握判断变量A、B有关联;③当时,有99%的把握判断变量A、B有关联.22.(10分)2022北京冬奥会即将开始,北京某大学鼓励学生积极参与志愿者的选拔.某学院有6名学生通过了志愿者选拔,其中4名男生,2名女生(1)若从中挑选2名志愿者,求入选者正好是一名男生和一名女生的概率;(2)若从6名志愿者中任选3人负责滑雪项目服务岗位,那么现将6人分为A、B两组进行滑雪项目相关知识及志愿者服务知识竞赛,共赛10局.A、B两组分数(单位:分)如下:A:125,141,140,137,122,114,119,139,121,142B:126,115,143,126,143,115,139,139,115,139从统计学角度看,应选择哪个组更合适?理由是什么?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据抛物线的概念,可得准线方程为2、D【解析】利用三线垂直建立空间直角坐标系,将线面角转化为直线的方向向量和平面的法向量所成的角,再利用空间向量进行求解.【详解】以,,所在直线为轴,轴,轴建立空间直角坐标系(如图所示),则,,,,,设平面的一个法向量为,则,即,令,则,,所以平面的一个法向量为;设直线与平面所成角为,则,即直线与平面所成角的正弦值为.故选:D.3、B【解析】由可得,利用导数判断函数在上的单调性,由此比较函数值的大小确定正确选项.【详解】∵∴,当时,,∴,故∴在内单调递增,又,∴,所以故选:B4、C【解析】由全称命题的否定:将任意改存在并否定结论,即可写出原命题p的否定.【详解】由全称命题的否定为特称命题,∴是“,”.故选:C.5、D【解析】根据,解不等式即可求解.【详解】由方程表示圆,则,解得.所以实数m的取值范围为.故选:D6、B【解析】利用空间向量的加法和减法法则可得出关于、、的表达式.【详解】故选:B.7、B【解析】求出,然后可得答案.【详解】,所以故选:B8、B【解析】将300个数编号:001,002,003,,3000,再平均分为15个小组,然后按系统抽样方法得解.【详解】将300个数编号:001,002,003,,3000,再平均分为15个小组,则第一编号为006,第二个编号为.故选:B.9、A【解析】根据两直线平行的条件列方程,化简求得,检验后确定正确答案.【详解】由于直线与直线平行,所以,或,当时,两直线方程都为,即两直线重合,所以不符合题意.经检验可知符合题意.故选:A10、D【解析】利用两角和的正切公式计算出正确答案.【详解】.故选:D11、A【解析】由题意可得,令,可得,再由三角形的面积公式,解方程可得,,即可得到所求椭圆的方程【详解】由题意可得,即,即有,令,则,可得,则,即,解得,,∴椭圆的方程为故选:A12、C【解析】设,,根据双曲线的定义可得,,在中由勾股定理列方程可得,在中由勾股定理可得关于,的方程,再由离心率公式即可求解.【详解】设,则,由双曲线的定义可得:,,因为点在以为直径的圆上,所以,所以,即,解得:,在中,,,,由可得,即,所以双曲线离心率为,故选:C.第II卷(非选择题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分别令和,再将两个等式相加可求得的值.【详解】令,则;令,则.上述两式相加得故答案为:.【点睛】本题考查偶数项系数和的计算,一般令和,通过对等式相加减求得,考查计算能力,属于中等题.14、2【解析】根据等差数列性质求得,再根据题意列出相关的方程组,解得答案.【详解】为等差数列,故由可得:,即,故,故,所以,解得,故答案为:215、-1【解析】由已知及等差数列通项公式、前n项和公式,列方程求基本量即可.【详解】若公差为,则,可得.故答案为:.16、3600【解析】先设分割大房间为间,小房间为间,收益为元,列出约束条件,再根据约束条件画出可行域,设,再利用的几何意义求最值,只需求出直线过可行域内的整数点时,从而得到值即可【详解】解:设装修大房间间,小房间间,收益为万元,则,目标函数,由,解得画出可行域,得到目标函数过点时,有最大值,故应隔出大房间3间和小房间8间,每天能获得最大的房租收益最大,且为3600元故答案为:3600三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)焦点坐标为,,顶点坐标为,,渐近线方程为;(2).【解析】(1)根据双曲线方程确定,即可按照概念对应写出焦点坐标、顶点坐标和渐近线方程;(2)先求(用表示),再根据解不等式得结果.【详解】(1)当时,双曲线方程化为,所以,,,所以焦点坐标为,,顶点坐标为,,渐近线方程为.(2)因为,所以,解得,所以实数的取值范围是【点睛】本题根据双曲线方程求焦点坐标、顶点坐标和渐近线方程,根据离心率求参数范围,考查基本分析求解能力,属基础题.18、(1),(2)【解析】利用正余弦定理化简即求解A和B的大小利用正弦定理把CN、CM表示出来,结合三角函数的性质,即可求解的面积的最小值【详解】解:,由正弦定理得:,,,可得,即;,由由余弦定理可得:,,如图所示:设,,在中由正弦定理,得,由可知,,所以:,同理,由于,故,此时故的面积的最小值为【点睛】本题考查了正余弦定理的应用,三角函数的有界限求解最值范围,考查了推理能力与计算能力,属于中档题19、(1)(2)【解析】(1)直接利用两点式写出直线的方程;(2)先求出直线的斜率,由点斜式写出直线的方程.【小问1详解】直线经过,两点,由两点式得直线的方程为.【小问2详解】与直线垂直直线的斜率为由点斜式得直线的方程为.20、(1);(2)直线的斜率为定值,且定值为.【解析】(1)根据椭圆的离心率及所过的点求出椭圆参数a、b,即可得椭圆标准方程.(2)由题设得,法一:设为,联立椭圆方程应用韦达定理求M坐标,根据与斜率关系求N的坐标,应用两点式求斜率;法二:设为,,联立椭圆方程,应用韦达定理及得到关于参数m、k的方程,即可判断是否为定值.【小问1详解】由题意,则,又,所以椭圆C方程为,代入有,解得,所以,故椭圆的标准方程为;【小问2详解】由题设易知:,法一:设直线为,由,消去y,整理得,因为方程有一个根为,所以M的横坐标为,纵坐标,故M为,用代替k,得N为,所以,故直线的斜率为定值法二:由已知直线的斜率存在,可设直线为,,由,消去y,整理得,所以,而,又,代入整理得,所以,即,若,则直线过点T,不合题意,所以.即,故直线的斜率为定值.【点睛】关键点点睛:第二问,设直线方程并联立椭圆方程,应用韦达定理及得到关于直线斜率的方M、N程,或求出的坐标,应用两点式求斜率.21、(1)列联表见解析,有99%的把握判断监管力度与食品质量有关联;(2)X的分布列见解析,X的期望为【解析】(1)根据给定条件完善列联表,再计算的观测值并结合给定数据即可作答.(2)求出X的可能值及各个值对应的概率列出X的分布列,再计算期望作答.【小问1详解】对监管力度满意的有,对食品质量满意的有,列联表如下:对监督力度满意对监督力度不满意总计对食品质量满意8040120对食品质量不满意701080总计15050200则的观测值为:,所以有99%的把握判断监管力度与食品质量有关联.【小问2详解】由(1)及已知得,X的所有可能值为:0,1,2,3,,,,,X的分布列为:X0123PX的期望为:.【点睛】易错点睛:独立性检验得出的结论是带有概率性质的,不可对某个问题下确定性结论,否则就可能对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论