版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市浦东新区进才中学2026届高二上数学期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,,其中,,,则()A. B.C. D.2.已知动圆过定点,并且与定圆外切,则动圆的圆心的轨迹是()A.抛物线 B.椭圆C.双曲线 D.双曲线的一支3.如图,已知、分别是椭圆的左、右焦点,点、在椭圆上,四边形是梯形,,且,则的面积为()A. B.C. D.4.已知向量,,且,则实数等于()A.1 B.2C. D.5.设等差数列,前n项和分别是,若,则()A.1 B.C. D.6.已知圆C过点,圆心在x轴上,则圆C的方程为()A. B.C. D.7.过点且平行于直线的直线的方程为()A. B.C. D.8.如图,在正方体ABCD-EFGH中,P在棱BC上,BP=x,平行于BD的直线l在正方形EFGH内,点E到直线l的距离记为d,记二面角为A-l-P为θ,已知初始状态下x=0,d=0,则()A.当x增大时,θ先增大后减小 B.当x增大时,θ先减小后增大C.当d增大时,θ先增大后减小 D.当d增大时,θ先减小后增大9.已知随机变量X的分布列如表所示,则()X123Pa2a3aA. B.C. D.10.已知抛物线的焦点为,为抛物线上一点,为坐标原点,且,则()A.4 B.2C. D.11.直线与圆的位置关系是()A.相切 B.相交C.相离 D.不确定12.已知双曲线的左、右焦点分别为,,过作圆的切线分别交双曲线的左、右两支于,,且,则双曲线的渐近线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.历史上第一个研究圆锥曲线的是梅纳库莫斯(公元前375年—325年),大约100年后,阿波罗尼奥更详尽、系统地研究了圆锥曲线,并且他还进一步研究了这些圆锥曲线的光学性质,比如:从抛物线的焦点发出的光线或声波在经过抛物线反射后,反射光线平行于抛物线的对称轴:反之,平行于抛物线对称轴的光线,经抛物线反射后,反射光线经过抛物线的焦点.已知抛物线,经过点一束平行于C对称轴的光线,经C上点P反射后交C于点Q,则PQ的长度为______.14.已知某圆锥的高为4,体积为,则其侧面积为________15.抛物线()上的一点到其焦点F的距离______.16.曲线在点处的切线与坐标轴围成的三角形面积为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,在处有极值.(1)求、的值;(2)若,有个不同实根,求的范围.18.(12分)已知A(-3,0),B(3,0),四边形AMBN的对角线交于点D(1,0),kMA与kMB的等比中项为,直线AM,NB相交于点P.(1)求点M的轨迹C的方程;(2)若点N也在C上,点P是否在定直线上?如果是,求出该直线,如果不是,请说明理由.19.(12分)的内角A,B,C的对边分别为a,b,c.已知.(1)求B.(2)___________,若问题中的三角形存在,试求出;若问题中的三角形不存在,请说明理由.在①,②,③这三个条件中任选一个,补充在横线上.注:如果选择多个条件分别解答,按第一个解答计分.20.(12分)已知命题p为“方程没有实数根”,命题q为“”.(1)若p为真命题,求m的取值范围;(2)若p和q有且只有一个为真命题,求m的取值范围.21.(12分)已知的三个内角,,的对边分别为,,,且满足.(1)求角的大小;(2)若,,,求的长.22.(10分)如图,在四棱锥中,平面,底面为矩形,,,为的中点,.请用空间向量知识解答下列问题:(1)求线段的长;(2)若为线段上一点,且,求平面与平面夹角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先令函数,求导判断函数的单调性,并作出函数的图像,由函数的单调性判断,再由对称性可得.【详解】由,则,同理,,令,则,当;当,∴在上单调递减,单调递增,所以,即可得,又,,由图的对称性可知,.故选:C2、D【解析】结合双曲线定义的有关知识确定正确选项.【详解】圆圆心为,半径为,依题意可知,结合双曲线的定义可知,的轨迹为双曲线的一支.故选:D3、A【解析】设点关于原点的对称点为点,连接、,分析可知、、三点共线,设点、,设直线的方程为,分析可知,将直线的方程与椭圆的方程联立,列出韦达定理,求出的值,可得出的值,再利用三角形的面积公式可求得结果.【详解】设点关于原点的对称点为点,连接、,如下图所示:因为为、的中点,则四边形为平行四边形,可得且,因为,故、、三点共线,设、,易知点,,,由题意可知,,可得,若直线与轴重合,设,,则,不合乎题意;设直线的方程为,联立,可得,由韦达定理可得,得,,则,可得,故,因此,.故选:A.4、C【解析】利用空间向量垂直的坐标表示计算即可得解【详解】因向量,,且,则,解得,所以实数等于.故选:C5、B【解析】根据等差数列的性质和求和公式变形求解即可【详解】因为等差数列,的前n项和分别是,所以,故选:B6、C【解析】设出圆的标准方程,将已知点的坐标代入,解方程组即可.【详解】设圆的标准方程为,将坐标代入得:,解得,故圆的方程为,故选:C.7、B【解析】根据平行设直线方程,代入点计算得到答案.【详解】设直线方程为,将点代入直线方程得到,解得.故直线方程为:.故选:B.8、C【解析】以F为坐标原点,FB,FG,FE所在直线为x轴,y轴,z轴建立空间直角坐标系,设正方体的棱长为2,则P(2,x,0),A(2,0,2),设直线l与EF,EH交于点M、N,,求得平面AMN的法向量为,平面PMN的法向量,由空间向量的夹角公式表示出,对于A,B选项,令d=0,则,由函数的单调性可判断;对于C,D,当x=0时,则,令,利用导函数研究函数的单调性可判断.【详解】解:由题意,以F为坐标原点,FB,FG,FE所在直线为x轴,y轴,z轴建立空间直角坐标系如图所示,设正方体的棱长为2,则P(2,x,0),A(2,0,2),设直线l与EF,EH交于点M、N,则,所以,,设平面AMN的法向量为,则,即,令,则,设平面PMN的法向量为,则,即,令,则,,对于A,B选项,令d=0,则,显示函数在是为减函数,即减小,则增大,故选项A,B错误;对于C,D,对于给定的,如图,过作,垂足为,过作,垂足为,过作,垂足为,当在下方时,,设,则对于给定的,为定值,此时设二面角为,二面角为,则二面角为,且,故,而,故即,当时,为减函数,故为增函数,当时,为增函数,故为减函数,故先增后减,故D错误.当在上方时,,则对于给定的,为定值,则有二面角为,且,因,故为增函数,故为减函数,综上,对于给定的,随的增大而减少,故选:C.9、C【解析】根据分布列性质计算可得;【详解】解:依题意,解得,所以;故选:C10、B【解析】依题意可得,设,根据可得,,根据为抛物线上一点,可得.【详解】依题意可得,设,由得,所以,,所以,,因为为抛物线上一点,所以,解得.故选:B.【点睛】本题考查了平面向量加法的坐标运算,考查了求抛物线方程,属于基础题.11、B【解析】直线恒过定点,而此点在圆的内部,故可得直线与圆的位置关系.【详解】直线恒过定点,而,故点在圆的内部,故直线与圆的位置关系为相交,故选:B.12、D【解析】直线的斜率为,计算,,利用余弦定理得到,化简知,得到答案【详解】由题意知直线的斜率为,,又,由双曲线定义知,,.由余弦定理:,,即,即,解得.故双曲线渐近线的方程为.故答案选D【点睛】本题考查了双曲线的渐近线,与圆的关系,意在考查学生的综合应用能力和计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、####【解析】根据题意,求得点以及抛物线焦点的坐标,即可求得所在直线方程,联立其与抛物线方程,求得点的坐标,即可求得.【详解】因为经过点一束平行于C对称轴的光线交抛物线于点,故对,令,则可得,也即的坐标为,又抛物线的焦点的坐标为,故可得直线方程为,联立抛物线方程可得:,,解得或,将代入,可得,即的坐标为,则.故答案为:.14、【解析】设该圆锥的底面半径为r,由圆锥的体积V=πr2h,可解得r的值,再由勾股定理求得圆锥的母线长l,而侧面积S=πrl,代入数据即可得解【详解】设该圆锥的底面半径为r,圆锥的体积V=πr2h=πr2×4=12π,解得r=3∴圆锥母线长l==5,∴侧面积S=πrl=15π故答案为:15π【点睛】本题考查圆锥的侧面积和体积的计算,理解圆锥的结构特征是解题的关键,考查学生的空间立体感和运算能力,属于基础题15、【解析】将点坐标代入方程中可求得抛物线的方程,从而可得到焦点坐标,进而可求出【详解】解:为抛物线上一点,即有,,抛物线的方程为,焦点为,即有.故答案为:5.16、【解析】运用导数的几何意义进行求解即可.【详解】由,所以,而,所以切线方程为:,令,得,令,得,所以三角形的面积为:,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)根据题设条件可得,由此可解得与的值(2)依题意可知直线与函数的图象有三个不同的交点,则的取值范围介于极小值与极大值之间.【小问1详解】因为函数,在处有极值,所以,即,解得,.【小问2详解】由(1)知,,所以在上,,单调递增,在上,,单调递减,在上,,单调递增,所以,,若有3个不同实根,则,所以的取值范围为.18、(1);(2)点P在定直线x=9上.理由见解析.【解析】(1)设点,根据两点坐标距离公式和等比数列的等比中项的应用列出方程,整理方程即可;(2)设直线MN方程为:,点,联立双曲线方程消去x得到关于y的一元二次方程,根据韦达定理写出,利用两点坐标和直线的点斜式方程写出直线PA、PB,联立方程组,解方程组即可.【小问1详解】设点,则,又,所以,整理,得,即轨迹M的方程C为:;【小问2详解】点P在定直线上.由(1)知,曲线C方程为:,直线MN过点D(1,0)若直线MN斜率不存在,则,得,不符合题意;设直线MN方程为:,点,则,消去x,得,有,,,,所以直线PA方程为:,直线PB方程为:,所以点P的坐标为方程组的解,有,即,整理,得,解得,即点P在定直线上.19、(1)(2)答案见解析【解析】(1)由正弦定理及正弦的两角和公式可求解;(2)选择条件①,由正弦定理及辅助角公式可求解;选择条件②,由余弦定理及正切三角函数可求解;选择条件③,由余弦定理可求解【小问1详解】由,可得,则.∴,在中,,则,∵,∴,∴,∵,∴.【小问2详解】选择条件①,在中,,可得,∵,∴,∴,根据辅助角公式,可得,∵,∴,即,故.选择条件②由,得,∵,∴,因此,,整理得,即,则.在中,,∴.故.选择条件③由,得,即,整理得,由于,则方程无解,故不存在这样的三角形.20、(1)(2)【解析】(1)方程无根,利用根的判别式小于0求出m的取值范围;(2)和有且只有一个为真命题,分两种情况进行求解,最终求出结果.【小问1详解】由方程没有实数根,得,解得:.所以m的取值范围为.【小问2详解】和有且只有一个为真命题,分为下列两种情况:①当真且假时,且,得;②当假且真时,且,得.所以,的取值范围为.21、(1);(2).【解析】(1)由正弦定理化边为角后,结合两角和的正弦公式、诱导公式可求得;(2)用表示出,然后平方由数量积的运算求得向量的模(线段长度)【详解】(1)因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物质组成的表示课件-九年级化学人教版上册
- 承包生态农业合同范本
- 工程型材购销合同范本
- 工程器具维修合同范本
- 二年级数学上册《认识人民币》教学设计
- 家电家具装修合同范本
- 工程合同范本详解模板
- 委托采购建材合同范本
- 店铺代运营合同协议书
- 打印机合作协议合同书
- 2025甘肃庆阳正宁县公安局招聘警务辅助人员40人考试参考试题及答案解析
- 2024山东交通学院辅导员招聘笔试真题及答案
- 小型手持式采茶机
- 太空交通管理规则-洞察及研究
- 化学反应原理大题集训(含解析)-2026届高中化学一轮复习讲义
- 腹腔镜手术应用推广方案与技术指南
- 北京市西城区中学课余训练:现状洞察与发展探究
- 规划展馆改造项目方案(3篇)
- 玉米dh育种技术
- 头孢曲松钠过敏的观察与急救
- 幼儿园后勤人员培训会议记录2025
评论
0/150
提交评论