版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1页(共1页)2026年高考数学复习热搜题速递之概率(2025年12月)一.选择题(共8小题)1.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.521 B.1021 C.1121 2.在区间[0,2]上随机地取一个数x,则事件“﹣1≤log12(x+A.34 B.23 C.13 3.已知随机变量ξi满足P(ξi=1)=pi,P(ξi=0)=1﹣pi,i=1,2.若0<p1<p2<1A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2) B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2) C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2) D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)4.现从4名男医生和3名女医生中抽取两人加入“援鄂医疗队”,用A表示事件“抽到的两名医生性别相同”,B表示事件“抽到的两名医生都是女医生”,则P(B|A)=()A.13 B.47 C.23 5.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.13 B.12 C.23 6.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附“若X~N=(μ,a2),则P(μ﹣σ<X≤μ+σ)=0.6826.p(μ﹣2σ<X≤μ+2σ)=0.9544.A.2386 B.2718 C.3413 D.47727.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为()A.23 B.25 C.35 8.设某医院仓库中有10盒同样规格的X光片,已知其中有5盒、3盒、2盒依次是甲厂、乙厂、丙厂生产的.且甲、乙、丙三厂生产该种X光片的次品率依次为110,115,120,现从这10盒中任取一盒,再从这盒中任取一张XA.0.08 B.0.1 C.0.15 D.0.2二.多选题(共4小题)(多选)9.设离散型随机变量X的分布列为X01234Pq0.40.10.20.2若离散型随机变量Y满足Y=2X+1,则下列结果正确的有()A.q=0.1 B.EX=2,DX=1.4 C.EX=2,DX=1.8 D.EY=5,DY=7.2(多选)10.下列结论正确的是()A.P(A)=P(B)P(A|B)+P(BB.P(B)=P(A)P(B|A)+P(A)P(BC.P(A|B)=P(B)P(A|B)D.P(A|B)=(多选)11.下列说法正确的是()A.甲乙两人独立地解题,已知各人能解出的概率分别是0.5,0.25,则题被解出的概率是0.125 B.若A,B是互斥事件,则P(A∪B)=P(A)+P(B),P(AB)=0 C.某校200名教师的职称分布情况如下:高级占比20%,中级占比50%,初级占比30%,现从中抽取50名教师做样本,若采用分层抽样方法,则高级教师应抽取10人 D.一位男生和两位女生随机排成一列,则两位女生相邻的概率是2(多选)12.如图,在某城市中,M、N两地之间有整齐的方格形道路网,其中A1、A2、A3、A4是道路网中位于一条对角线上的4个交汇处.今在道路网M、N处的甲、乙两人分别要到N、M处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到达N、M处为止.则下列说法正确的是()A.甲从M到达N处的方法有120种 B.甲从M必须经过A2到达N处的方法有9种 C.甲、乙两人在A2处相遇的概率为81400D.甲、乙两人相遇的概率为41三.填空题(共4小题)13.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是(写出所有正确结论的编号).①P(B)=2②P(B|③事件B与事件A1相互独立;④A1,A2,A3是两两互斥的事件;⑤P(B)的值不能确定,因为它与A1,A2,A3中哪一个发生有关.14.赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则Eξ1﹣Eξ2=(元).15.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则从2号箱取出红球的概率是.16.举重比赛的规则是:挑战某一个重量,每位选手可以试举三次,若三次均未成功则挑战失败;若有一次举起该重量,则无需再举,视为挑战成功.已知甲选手每次能举起该重量的概率是23,且每次试举相互独立,互不影响.设甲试举的次数为随机变量X,则X的数学期望E(X)=;已知甲选手挑战成功,则甲是第二次举起该重量的概率是四.解答题(共4小题)17.某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.(1)求x和y的值;(2)计算甲班7位学生成绩的方差s2;(3)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.18.甲、乙两选手比赛,假设每局比赛甲胜的概率是23,乙胜的概率是1(1)如果两人赛3局,求甲恰好胜2局的概率和乙至少胜1局的概率;(2)如果采用五局三胜制(若甲、乙任何一方先胜3局,则比赛结束,结果为先胜3局者获胜),求甲获胜的概率.19.一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图).(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中有放回的抽取3个小球,其中重量在[5,15]内的小球个数为X,求X的分布列和数学期望.(以直方图中的频率作为概率)20.某大学志愿者协会有6名男同学,4名女同学,在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学是来自互不相同学院的概率;(Ⅱ)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.
2026年高考数学复习热搜题速递之概率(2025年12月)参考答案与试题解析一.选择题(共8小题)题号12345678答案BAAAACDA二.多选题(共4小题)题号9101112答案ACDADBCDBCD一.选择题(共8小题)1.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.521 B.1021 C.1121 【考点】古典概型及其概率计算公式.【专题】概率与统计.【答案】B【分析】首先判断这是一个古典概型,从而求基本事件总数和“所取的2个球中恰有1个白球,1个红球”事件包含的基本事件个数,容易知道基本事件总数便是从15个球任取2球的取法,而在求“所取的2个球中恰有1个白球,1个红球”事件的基本事件个数时,可利用分步计数原理求解,最后代入古典概型的概率公式即可.【解答】解:这是一个古典概型,从15个球中任取2个球的取法有∁15∴基本事件总数为105;设“所取的2个球中恰有1个白球,1个红球”为事件A;则A包含的基本事件个数为∁101∴P(A)=50故选:B.【点评】考查古典概型的概念,以及古典概型的求法,熟练掌握组合数公式和分步计数原理.2.在区间[0,2]上随机地取一个数x,则事件“﹣1≤log12(x+A.34 B.23 C.13 【考点】几何概型.【专题】计算题;概率与统计.【答案】A【分析】先解已知不等式,再利用解得的区间长度与区间[0,2]的长度求比值即得.【解答】解:利用几何概型,其测度为线段的长度.∵﹣1≤log12(x∴1解得0≤x≤3∵0≤x≤2∴0≤x≤∴所求的概率为:P=故选:A.【点评】本题主要考查了几何概型,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.3.已知随机变量ξi满足P(ξi=1)=pi,P(ξi=0)=1﹣pi,i=1,2.若0<p1<p2<1A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2) B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2) C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2) D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)【考点】离散型随机变量的均值(数学期望).【专题】计算题;方程思想;综合法;概率与统计.【答案】A【分析】由已知得0<p1<p2<12,12<1﹣p2<1﹣p1<1,求出E(ξ1)=p1,E(ξ2)=p2,从而求出D(ξ1),D【解答】解:∵随机变量ξi满足P(ξi=1)=pi,P(ξi=0)=1﹣pi,i=1,2,…,0<p1<p2<1∴12<1﹣p2<1﹣p1<E(ξ1)=1×p1+0×(1﹣p1)=p1,E(ξ2)=1×p2+0×(1﹣p2)=p2,D(ξ1)=(1﹣p1)2p1+(0﹣p1)2(1﹣p1)=pD(ξ2)=(1﹣p2)2p2+(0﹣p2)2(1﹣p2)=pD(ξ1)﹣D(ξ2)=p1﹣p12﹣(p2-p22)=(p2﹣p1)(p1+p2∴E(ξ1)<E(ξ2),D(ξ1)<D(ξ2).故选:A.【点评】本题考查离散型随机变量的数学期望和方差等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.4.现从4名男医生和3名女医生中抽取两人加入“援鄂医疗队”,用A表示事件“抽到的两名医生性别相同”,B表示事件“抽到的两名医生都是女医生”,则P(B|A)=()A.13 B.47 C.23 【考点】条件概率.【专题】整体思想;综合法;概率与统计;运算求解.【答案】A【分析】条件概率,先求出A事件数,再求出B事件数,利用古典概型概率公式求解.【解答】解:由题意可得:事件A基本事件数,C42事件B的基本事件数,C32所以P(B|A)=3故选:A.【点评】本题考查统计与概率,条件概率的计算,属于基础题.5.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.13 B.12 C.23 【考点】古典概型及其概率计算公式.【专题】概率与统计.【答案】A【分析】本题是一个古典概型,试验发生包含的事件数是3×3种结果,满足条件的事件是这两位同学参加同一个兴趣小组有3种结果,根据古典概型概率公式得到结果.【解答】解:由题意知本题是一个古典概型,试验发生包含的事件数是3×3=9种结果,满足条件的事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到P=3故选:A.【点评】本题考查古典概型概率公式,是一个基础题,题目使用列举法来得到试验发生包含的事件数和满足条件的事件数,出现这种问题一定是一个必得分题目.6.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附“若X~N=(μ,a2),则P(μ﹣σ<X≤μ+σ)=0.6826.p(μ﹣2σ<X≤μ+2σ)=0.9544.A.2386 B.2718 C.3413 D.4772【考点】正态分布曲线的特点及曲线所表示的意义.【专题】计算题;概率与统计.【答案】C【分析】求出P(0<X≤1)=12×0.6826【解答】解:由题意P(0<X≤1)=12×0.6826∴落入阴影部分点的个数的估计值为10000×0.3413=3413,故选:C.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.7.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为()A.23 B.25 C.35 【考点】互斥事件的概率加法公式.【专题】概率与统计.【答案】D【分析】设“甲或乙被录用”为事件A,则其对立事件A表示“甲乙两人都没有被录取”,先求出P(A),再利用P(A)=1﹣P(【解答】解:设“甲或乙被录用”为事件A,则其对立事件A表示“甲乙两人都没有被录取”,则P(A因此P(A)=1﹣P(A)=1-1故选:D.【点评】熟练掌握互为对立事件的概率之间的关系是解题的关键.8.设某医院仓库中有10盒同样规格的X光片,已知其中有5盒、3盒、2盒依次是甲厂、乙厂、丙厂生产的.且甲、乙、丙三厂生产该种X光片的次品率依次为110,115,120,现从这10盒中任取一盒,再从这盒中任取一张XA.0.08 B.0.1 C.0.15 D.0.2【考点】全概率公式;相互独立事件和相互独立事件的概率乘法公式.【专题】方程思想;定义法;概率与统计;运算求解.【答案】A【分析】以A1,A2,A3分别表示取得的这盒X光片是由甲厂、乙厂、丙厂生产的,B表示取得的X光片为次品,由全概率公式能求出结果.【解答】解:以A1,A2,A3分别表示取得的这盒X光片是由甲厂、乙厂、丙厂生产的,B表示取得的X光片为次品,P(A1)=510,P(A2)=310,P(AP(B|A1)=110,P(B|A2)=115,P(B|A由全概率公式得:P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=5=0.08.故选:A.【点评】本题考查概率的求法,考查全概率公式等基础知识,考查运算求解能力,是基础题.二.多选题(共4小题)(多选)9.设离散型随机变量X的分布列为X01234Pq0.40.10.20.2若离散型随机变量Y满足Y=2X+1,则下列结果正确的有()A.q=0.1 B.EX=2,DX=1.4 C.EX=2,DX=1.8 D.EY=5,DY=7.2【考点】离散型随机变量及其分布列.【专题】计算题;方程思想;定义法;概率与统计;运算求解.【答案】ACD【分析】由离散型随机变量X的分布列的性质求出p=0.1,由此能求出E(X),D(X),再由离散型随机变量Y满足Y=2X+1,能求出E(Y)和D(Y).【解答】解:由离散型随机变量X的分布列的性质得:q=1﹣0.4﹣0.1﹣0.2﹣0.2=0.1,E(X)=0×0.1+1×0.4+2×0.1+3×0.2+4×0.2=2,D(X)=(0﹣2)2×0.1+(1﹣2)2×0.4+(2﹣2)2×0.1+(3﹣2)2×0.2+(4﹣2)2×0.2=1.8,∵离散型随机变量Y满足Y=2X+1,∴E(Y)=2E(X)+1=5,D(Y)=4D(X)=7.2.故选:ACD.【点评】本题考查命题真假的判断,考查离散型随机变量的分布列、数学期望、方差的性质等基础知识,考查运算求解能力,是基础题.(多选)10.下列结论正确的是()A.P(A)=P(B)P(A|B)+P(BB.P(B)=P(A)P(B|A)+P(A)P(BC.P(A|B)=P(B)P(A|B)D.P(A|B)=【考点】贝叶斯公式;条件概率.【专题】方程思想;定义法;概率与统计;运算求解.【答案】AD【分析】利用全概率公式、条件概率、贝叶斯公式直接求解.【解答】解:对于A,由全概率公式得P(A)=P(B)P(A|B)+P(B)P(A|B),故A正确;对于B,由全概率公式得P(B)=P(A)P(B|A)+P(A)P(B|A),故B错误;对于C,由条件概率得P(A|B)=P(AB)P(B)≠对于D,由贝叶斯公式得P(A|B)=P(A)P(B|A)P(A)P(B|A)+P(A故选:AD.【点评】本题考查命题真假的判断,考查全概率公式、条件概率、贝叶斯公式等基础知识,考查运算求解能力,是基础题.(多选)11.下列说法正确的是()A.甲乙两人独立地解题,已知各人能解出的概率分别是0.5,0.25,则题被解出的概率是0.125 B.若A,B是互斥事件,则P(A∪B)=P(A)+P(B),P(AB)=0 C.某校200名教师的职称分布情况如下:高级占比20%,中级占比50%,初级占比30%,现从中抽取50名教师做样本,若采用分层抽样方法,则高级教师应抽取10人 D.一位男生和两位女生随机排成一列,则两位女生相邻的概率是2【考点】概率及其性质;分层随机抽样.【专题】转化思想;分析法;概率与统计;运算求解.【答案】BCD【分析】甲乙两人各自解出的概率分别为0.5,0.25,求解出两人都不能解出此题的概率,其对立事件即为此题能被解出的概率,即可判断A选项,根据互斥事件的定义,即可判断B选项,结合分层抽样的计算方法,即可判断C选项,根据已知条件,结合排列组合中的“捆绑法”,即可求解.【解答】解:∵甲乙两人各自解出的概率分别为0.5,0.25,∴此题不能解出的概率为(1﹣0.5)×(1﹣0.25)=0.375,则此题能解出的概率为1﹣0.375=0.625,故A选项错误,由于A,B是互斥事件,则P(A∪B)=P(A)+P(B),P(AB)=0,故B选项正确,由题意可得,高级教师应抽取50×20%=10人,故C选项正确,一位男生和两位女生随机排成一列,则两位女生相邻的概率P=A22故选:BCD.【点评】本题考查了分层抽样的性质和互斥事件的定义,以及排列组合中的“捆绑法”,需要学生较强的综合知识,属于中档题.(多选)12.如图,在某城市中,M、N两地之间有整齐的方格形道路网,其中A1、A2、A3、A4是道路网中位于一条对角线上的4个交汇处.今在道路网M、N处的甲、乙两人分别要到N、M处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到达N、M处为止.则下列说法正确的是()A.甲从M到达N处的方法有120种 B.甲从M必须经过A2到达N处的方法有9种 C.甲、乙两人在A2处相遇的概率为81400D.甲、乙两人相遇的概率为41【考点】古典概型及其概率计算公式;排列组合的综合应用.【专题】转化思想;综合法;概率与统计;运算求解.【答案】BCD【分析】对于A,甲由道路网M处出发随机地选择一条沿街的最短路径到达N处需走6步,由此能求出甲从M到达N处的方法;对于B,甲经过A2到达N,可分为两步:第一步:甲从M经过A2的方法数:C31种,第二步:甲从A2到N的方法数:C31种,利用分步计数原理求解;对于C,试验发生包含的事件数是C63C63,甲经过A2的方法数为(C31)2;乙经过A2的方法数也为(C31)2,得到甲、乙两人相遇经A2点的方法数为(C31)4,根据概率公式得到结果;对于D,甲、乙两人沿最短路径行走,只可能在A1、A2、A3、A4处相遇,他们在Ai(i=1,2,3,4)相遇的走法有(C3i﹣1【解答】解:对于A,甲由道路网M处出发随机地选择一条沿街的最短路径到达N处需走6步,共有C63=20对于B,甲经过A2到达N,可分为两步:第一步:甲从M经过A2的方法数:C3第二步:甲从A2到N的方法数:C3所以:甲经过A2的方法数为C31C3对于C,由AB知:甲从M到达N处的方法有C63=20种,甲经过A2的方法数为:同理,乙从N到达M处的方法有C63=20种,乙经过A2的方法数也为:∴甲、乙两人相遇经A2点的方法数为:C31C3∴甲、乙两人相遇经A2点的概率P=81C6对于D,甲、乙两人沿最短路径行走,只可能在A1、A2、A3、A4处相遇,他们在Ai(i=1,2,3,4)相遇的走法有(C3i﹣1)4种方法;∴(C30)4+(C31)4+(C32)4+(C33)4=164∴甲、乙两人相遇的概率P=164400=故选:BCD.【点评】本题考查命题真假的判断,涉及到等可能事件的概率、分类计数原理、分步计数原理等基础知识,考查空运算求解能力等核心素养,是中档题.三.填空题(共4小题)13.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是②④(写出所有正确结论的编号).①P(B)=2②P(B|③事件B与事件A1相互独立;④A1,A2,A3是两两互斥的事件;⑤P(B)的值不能确定,因为它与A1,A2,A3中哪一个发生有关.【考点】条件概率;全概率公式;事件的互斥(互不相容)及互斥事件;由两事件交事件的概率判断两事件的相互独立性.【专题】压轴题;概率与统计.【答案】见试题解答内容【分析】本题是概率的综合问题,掌握基本概念,及条件概率的基本运算是解决问题的关键.本题在A1,A2,A3是两两互斥的事件,把事件B的概率进行转化P(B)=P(B|•A1)+P(B•A2)+P(B•A3),可知事件B的概率是确定的.【解答】解:易见A1,A2,A3是两两互斥的事件,P(B)=P(B⋅故答案为:②④【点评】概率的综合问题,需要对基本概念和基本运算能够熟练掌握.14.赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则Eξ1﹣Eξ2=0.2(元).【考点】离散型随机变量的均值(数学期望).【专题】概率与统计.【答案】见试题解答内容【分析】分别求出赌金的分布列和奖金的分布列,计算出对应的均值,即可得到结论.【解答】解:赌金的分布列为ξ112345P1515151515所以Eξ1=15(1+2+3+4+5)=奖金的分布列为:若两张卡片上数字之差的绝对值为1,则有(1,2),(2,3),(3,4),(4,5),4种,若两张卡片上数字之差的绝对值为2,则有(1,3),(2,4),(3,5),3种,若两张卡片上数字之差的绝对值为3,则有(1,4),(2,5),2种,若两张卡片上数字之差的绝对值为4,则有(1,5),1种,则P(ξ2=1.4)=4C52=25,P(ξ2=2.8)=3C52=310,P(ξξ21.42.84.25.6P2531015110所以Eξ2=1.4×(25×1+310×2+1则Eξ1﹣Eξ2=3﹣2.8=0.2元.故答案为:0.2【点评】本题主要考查离散型随机变量的分布列和期望的计算,根据概率的公式分别进行计算是解决本题的关键.15.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则从2号箱取出红球的概率是1127【考点】条件概率.【专题】计算题.【答案】见试题解答内容【分析】记事件A:最后从2号箱中取出的是红球;事件B:从1号箱中取出的是红球,则从1号箱中取出一球放入2号箱,可能是红球,也可能是白球,分别计算概率,即可得到结论.【解答】解:记事件A:最后从2号箱中取出的是红球;事件B:从1号箱中取出的是红球.则P(B)=42+4=23,P(B)=1﹣PP(A|B)=3+18+1=49,P(A从而P(A)=P(AB)+P(AB)=P(A|B)P(B)+P(A|B)P(B)=4故答案为:11【点评】本题以摸球为素材,考查条件概率,考查独立事件的概率,解题的关键是分清从1号箱中取出一球放入2号箱的球,是红球,还是白球16.举重比赛的规则是:挑战某一个重量,每位选手可以试举三次,若三次均未成功则挑战失败;若有一次举起该重量,则无需再举,视为挑战成功.已知甲选手每次能举起该重量的概率是23,且每次试举相互独立,互不影响.设甲试举的次数为随机变量X,则X的数学期望E(X)=139;已知甲选手挑战成功,则甲是第二次举起该重量的概率是313【考点】离散型随机变量的均值(数学期望).【专题】分类讨论;转化法;概率与统计;运算求解.【答案】见试题解答内容【分析】利用相互独立、对立与互斥事件的概率计算公式可得P(X=k)(k=1,2,3),利用数学期望计算公式可得E(X),再利用全概率的计算公式即可得出结论.【解答】解:由题意可得X=1,2,3,P(X=1)=23,P(X=2)=13×23=29,P(∴E(X)=1×23+2×若甲选手挑战成功,则甲是第二次举起该重量的概率是29故答案为:139;3【点评】本题考查了相互独立、对立与互斥事件的概率计算公式、离散型随机变量的期望、全概率的计算公式,考查了推理能力与计算能力,属于中档题.四.解答题(共4小题)17.某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.(1)求x和y的值;(2)计算甲班7位学生成绩的方差s2;(3)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.【考点】古典概型及其概率计算公式;茎叶图;用样本估计总体的离散程度参数.【专题】概率与统计.【答案】见试题解答内容【分析】(1)利用平均数求出x的值,中位数求出y的值,解答即可.(2)根据所给的茎叶图,得出甲班7位学生成绩,做出这7次成绩的平均数,把7次成绩和平均数代入方差的计算公式,求出这组数据的方差.(3)设甲班至少有一名学生为事件A,其对立事件为从成绩在90分以上的学生中随机抽取两名学生,甲班没有一名学生;先计算出从成绩在90分以上的学生中随机抽取两名学生的所有抽取方法总数,和没有甲班一名学生的方法数目,再求出从成绩在90分以上的学生中随机抽取两名学生,甲班没有一名学生的概率,进而结合对立事件的概率性质求得答案.【解答】解:(1)∵甲班学生的平均分是85,∴92+96+80+x+85+79+787∴x=5,∵乙班学生成绩的中位数是83,∴y=3;(2)甲班7位学生成绩的方差为s2=17(3)甲班成绩在90分以上的学生有两名,分别记为A,B,乙班成绩在90分以上的学生有三名,分别记为C,D,E,从这五名学生任意抽取两名学生共有10种情况:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)其中甲班至少有一名学生共有7种情况:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E).记“从成绩在90分以上的学生中随机抽取两名学生,甲班至少有一名学生”为事件M,则P(M)=7答:从成绩在90分以上的学生中随机抽取两名学生,甲校至少有一名学生的概率为710【点评】本小题主要考查茎叶图、样本均值、样本方差、概率等知识,考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识.18.甲、乙两选手比赛,假设每局比赛甲胜的概率是23,乙胜的概率是1(1)如果两人赛3局,求甲恰好胜2局的概率和乙至少胜1局的概率;(2)如果采用五局三胜制(若甲、乙任何一方先胜3局,则比赛结束,结果为先胜3局者获胜),求甲获胜的概率.【考点】n重伯努利试验与二项分布;古典概型及其概率计算公式.【专题】概率与统计.【答案】(1)1927(2)6481【分析】(1)先由已知,甲、乙两名运动员在每一局比赛中获胜的概率,根据独立重复试验公式公式,列出算式,得到结果.(2)由于采用五局三胜制,则甲获胜包括甲以3:0获胜,以3:1获胜,以3:2获胜,根据独立重复试验公式列出算式,得到结果.【解答】解:(1)甲恰好胜2局的概率P1乙至少胜1局的概率P2(2)打3局:(23)3=打五局:C因此甲获胜的概率为64【点评】求一个事件的概率,关键是先判断出事件所属的概率模型,然后选择合适的概率公式进行计算.正确理解概率加法公式和相互独立性事件的概率计算公式是解题的关键.19.一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图).(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中有放回的抽取3个小球,其中重量在[5,15]内的小球个数为X,求X的分布列和数学期望.(以直方图中的频率作为概率)【考点】离散型随机变量的均值(数学期望).【专题】概率与统计.【答案】见试题解答内容【分析】(1)求解得a=0.03,由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20根据平均数值公式求解即可.(2)X~B(3,15),根据二项分布求解P(X=0),P(X=1),P(X=2),P(X=3【解答】解:(1)由题意得,(0.02+0.032+a+0.018)×10=1解得a=0.03;又由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20,而50个样本小球重量的平均值为:X=0.2×10+0.32×20+0.3×30+0.18×40=24.6故估计盒子中小球重量的平均值约为24.6克.(2)利用样本估计总体,该盒子中小球的重量在[5,15]内的0.2;则X~B(3,15X=0,1,2,3;P(X=0)=C30×(4P(X=1)=C31×(4P(X=2)=C32×(45)×(P(X=3)=C33×(1∴X的分布列为:X0123P6412548125121251125即E(X)=0×64【点评】本题考查了离散型的随机变量及概率分布列,数学期望的求解,注意阅读题意,得出随机变量的数值,准确求解概率,难度不大,需要很好的计算能力20.某大学志愿者协会有6名男同学,4名女同学,在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学是来自互不相同学院的概率;(Ⅱ)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.【考点】离散型随机变量的均值(数学期望).【专题】概率与统计.【答案】见试题解答内容【分析】(Ⅰ)利用排列组合求出所有基本事件个数及选出的3名同学是来自互不相同学院的基本事件个数,代入古典概型概率公式求出值;(Ⅱ)随机变量X的所有可能值为0,1,2,3,P(X=k)=C4kC63-kC103(k=0【解答】(Ⅰ)解:设“选出的3名同学是来自互不相同学院”为事件A,则P(A)=C所以选出的3名同学是来自互不相同学院的概率为4960(Ⅱ)解:随机变量X的所有可能值为0,1,2,3,P(X=k)=C4kC63-kC103(k所以随机变量X的分布列是X0123P1131随机变量X的数学期望E(X)=0×【点评】本题考查古典概型及其概率公式,互斥事件,离散型随机变量的分布列与数学期望,考查应用概率解决实际问题的能力.
考点卡片1.事件的互斥(互不相容)及互斥事件【知识点的认识】一般地,如果事件A与事件B不能同时发生,也就是说A∩B是一个不可能事件,即A∩B=∅,则称事件A与事件B互斥(或互不相容).【解题方法点拨】﹣判断两个事件是否互斥,即它们的交是否为空.【命题方向】.;﹣常用于考察事件是否互斥的问题.2.概率及其性质【知识点的认识】概率的意义概率是对未发生(或将要发生的)事件的一种推测.这是讨论概率的前提,概率越大,表示未来发生的可能性也就越大.比方说明天下雨的概率为0.9,那么明天下雨的可能性就很大了,但并不表示明天一定会下雨;如果说明天下雨的概率为0.1,那么表示明天下雨的可能性比较小,但不表示明天不下雨.这里我们可以看出概率表示的是将来某事件是否要发生的可能性的判断.概率的基本性质(1)概率的取值范围:[0,1].(2)必然事件的概率为1.(3)不可能事件的概率为0.(4)互斥事件的概率的加法公式:如果事件A,B互斥时,P(A+B)=P(A)+P(B),如果事件A1,A2,…An彼此互斥时,那么P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).如果事件A,B对立事件,则P(A+B)=P(A)+P(B)=1.注意事项:①特别的,若事件B与事件A互为对立事件,则A∪B为必然事件,P(A∪B)=1.在由加法公式得到P(A)=1﹣P(B)②若某事件发生当且仅当事情A发生或B发生,则称此事件为事件A与B的并事件,记作(A∪B)③若某事件发生当且仅当事件A发生且B发生,则称此事件为事件A与B的交事件,记作(A∩B)④若C∩B为不可能事件,A∪B为必然事件,那么称事件D与事件A互为对立事件,其含义是:事件F与事件E在任何一次实验中有且仅有一个发生.【解题方法点拨】例:试解释下面情况中的概率意义:(Ⅰ)某厂产品的次品率为0.02;(Ⅱ)服用某种药物治愈某种疾病的概率为90%.解:(Ⅰ)“某厂产品的次品率为0.02”是指任取一件产品为次品的可能性为2%,即若从该产品中任取100件产品,其中可能有2件次品,而不是一定有2件次品.(Ⅱ)“服用某种药物治愈某种疾病的概率为90%”是一个随机事件,概率为90%说明这种药治愈此种疾病的可能性是90%,但不是表示其一定能治愈,只是治愈的可能性较大.这个例题考查了对概率的理解,所说的和我在前面说的是一样的,通过这个例子希望大家可以更好的理解概率的意义.3.互斥事件的概率加法公式【知识点的认识】互斥事件的概率加法公式:在一个随机试验中,如果随机事件A和B是互斥事件,则有:P(A∪B)=P(A)+P(B)注:上式使用前提是事件A与B互斥.推广:一般地,如果事件A1,A2,…,An彼此互斥,那么事件发生(即A1,A2,…,An中有一个发生)的概率等于这n个事件分别发生的概率之和,即:P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)4.古典概型及其概率计算公式【知识点的认识】1.定义:如果一个试验具有下列特征:(1)有限性:每次试验可能出现的结果(即基本事件)只有有限个;(2)等可能性:每次试验中,各基本事件的发生都是等可能的.则称这种随机试验的概率模型为古典概型.*古典概型由于满足基本事件的有限性和基本事件发生的等可能性这两个重要特征,所以求事件的概率就可以不通过大量的重复试验,而只要通过对一次试验中可能出现的结果进行分析和计算即可.2.古典概率的计算公式如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=m【解题方法点拨】1.注意要点:解决古典概型的问题的关键是:分清基本事件个数n与事件A中所包含的基本事件数.因此要注意清楚以下三个方面:(1)本试验是否具有等可能性;(2)本试验的基本事件有多少个;(3)事件A是什么.2.解题实现步骤:(1)仔细阅读题目,弄清题目的背景材料,加深理解题意;(2)判断本试验的结果是否为等可能事件,设出所求事件A;(3)分别求出基本事件的个数n与所求事件A中所包含的基本事件个数m;(4)利用公式P(A)=mn求出事件3.解题方法技巧:(1)利用对立事件、加法公式求古典概型的概率(2)利用分析法求解古典概型.5.几何概型【知识点的认识】1.定义:若一个试验具有下列特征:(1)每次试验的结果有无限多个,且全体结果可用一个有度量的几何区域来表示;(2)每次试验的各种结果是等可能的.那么这样的试验称为几何概型.2.几何概率:设几何概型的基本事件空间可表示成可度量的区域Ω,事件A所对应的区域用A表示(A⊆Ω),则P(A)=A的度量Ω6.相互独立事件和相互独立事件的概率乘法公式【知识点的认识】1.相互独立事件:事件A(或B)是否发生,对事件B(或A)发生的概率没有影响,这样两个事件叫做相互独立事件.2.相互独立事件同时发生的概率公式:将事件A和事件B同时发生的事件即为A•B,若两个相互独立事件A、B同时发生,则事件A•B发生的概率为:P(A•B)=P(A)•P(B)推广:一般地,如果事件A1,A2,…,An相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率之积,即:P(A1•A2…An)=P(A1)•P(A2)…P(An)3.区分互斥事件和相互独立事件是两个不同的概念:(1)互斥事件:两个事件不可能同时发生;(2)相互独立事件:一个事件的发生与否对另一个事件发生的概率没有影响.7.由两事件交事件的概率判断两事件的相互独立性【知识点的认识】﹣对任意两个事件A与B,如果P(AB)=P(A)P(B)成立,则称事件A与事件B相互独立.【解题方法点拨】﹣判断事件是否独立,通过计算交事件的概率并与乘积概率进行比较.【命题方向】﹣主要考察事件独立性的判断,涉及独立事件的概率乘法公式.8.条件概率【知识点的认识】1、条件概率的定义:对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率,用符号P(B|A)来表示.(2)条件概率公式:称为事件A与B的交(或积).(3)条件概率的求法:①利用条件概率公式,分别求出P(A)和P(AB),得P(B|A)=P(AB)P(A),其中P(A)>②借助古典概型概率公式,先求出事件A包含的基本事件数n(A),再在事件A发生的条件下求出事件B包含的基本事件数,即n(A∩B),得P(B|A)=【解题方法点拨】典例1:利用计算机产生1到6之间取整数值的随机数a和b,在a+b为偶数的条件下,|a﹣b|>2发生的概率是29解:由题意得,利用计算机产生1到6之间取整数值的随机数a和b,基本事件的总个数是6×6=36,即(a,b)的情况有36种,事件“a+b为偶数”包含基本事件:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6)(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)共18个,“在a+b为偶数的条件下,|a﹣b|>2”包含基本事件:(1,5),(2,6),(5,1),(6,2)共4个,故在a+b为偶数的条件下,|a﹣b|>2发生的概率是P=故答案为:2典例2:甲乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为34,23,12,乙队每人答对的概率都是2(Ⅰ)求随机变量ξ的分布列及其数学期望E(ξ);(Ⅱ)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率.分析:(Ⅰ)由题设知ξ的可能取值为0,1,2,3,分别求出P(ξ=0),P(ξ=1),P(ξ=2),P(ξ=3),由此能求出随机变量ξ的分布列和数学期望E(ξ).(Ⅱ)设“甲队和乙队得分之和为4”为事件A,“甲队比乙队得分高”为事件B,分别求出P(A),P(AB),再由P(B/A)=P(AB)解答:(Ⅰ)由题设知ξ的可能取值为0,1,2,3,P(ξ=0)=(1-34)(1-23)(1P(ξ=1)=34(1-23)(1-12)+(1-34)×23×(1-P(ξ=2)=3P(ξ=3)=3∴随机变量ξ的分布列为:ξ0123P12414112414数学期望E(ξ)=0×124+1×14(Ⅱ)设“甲队和乙队得分之和为4”为事件A,“甲队比乙队得分高”为事件B,则P(A)=1P(AB)=1P(B|A)=P(AB)9.全概率公式【知识点的认识】全概率公式一般地,设A1,A2,…,An是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且P(Ai)>0,i=1,2,…,n,则对任意的事件B⊆Ω,有P(B)=i=110.贝叶斯公式【知识点的认识】贝叶斯公式:若事件A1,A2,…,构成一个完备事件组,且都具有正概率,则对任何一个不为零的时间B,都有:P(A【解题方法点拨】贝叶斯公式和全概率公式的联系:(1)各原因下条件概率已知,用全概率公式求事件发生概率;(2)事件已发生,求是某种原因造成的概率,用贝叶斯公式.【命题方向】贝叶斯公式是2019版新教材的一个知识点,考试题型较大可能是填空题或选择题,围绕考生的理解能力和综合应用能力进行考察,要求能灵活运用题干信息与所学知识,建立起正确的概率模型,综合运用排列组合等知识解决问题.11.离散型随机变量及其分布列【知识点的认识】1、相关概念;(1)随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示.(2)离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是随机变量,η=aξ+b,其中a、b是常数,则η也是随机变量.(3)连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量(4)离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出.2、离散型随机变量(1)随机变量:在随机试验中,试验可能出现的结果可以用一个变量X来表示,并且X是随着试验结果的不同而变化的,这样的变量X叫做一个随机变量.随机变量常用大写字母X,Y,…表示,也可以用希腊字母ξ,η,…表示.(2)离散型随机变量:如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量.3、离散型随机变量的分布列.(1)定义:一般地,设离散型随机变量X的所有可能值为x1,x2,…,xn;X取每一个对应值的概率分别为p1,p2,…,pn,则得下表:Xx1x2…xi…xnPp1p2…pi…pn该表为随机变量X的概率分布,或称为离散型随机变量X的分布列.(2)性质:①pi≥0,i=1,2,3,…,n;②p1+p2+…+pn=1.12.离散型随机变量的均值(数学期望)【知识点的认识】1、离散型随机变量的期望数学期望:一般地,若离散型随机变量ξ的概率分布则称Eξ=x1p1+x2p2+…+xnpn+…为ξ的数学期望,简称期望.数学期望的意义:数学期望离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平.平均数与均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令p1=p2=…=pn,则有p1=p2=…=pn=1n,Eξ=(x1+x2+…+xn)×1期望的一个性质:若η=aξ+b,则E(aξ+b)=aEξ+b.13.n重伯努利试验与二项分布【知识点的认识】1、二项分布:一般地,在n次独立重复的试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=Cnkpk(1﹣p)n﹣k,k=0,1,2,…n,此时称随机变量X服从二项分布,记作X~B(nCnkpk(1﹣p)n﹣k=b(k,n,2、独立重复试验:(1)独立重复试验的意义:做n次试验,如果它们是完全同样的一个试验的重复,且它们相互独立,那么这类试验叫做独立重复试验.(2)一般地,在n次独立重复试验中,设事件A发生的次数为X,在每件试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=Cnkpk(1﹣p)n﹣k,k=0,1,2,…n,此时称随机变量X服从二项分布,记作X~B(n,p(3)独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的.(4)独立重复试验概率公式的特点:Pn(k)=Cnkpk(1﹣p)n﹣k,是n次独立重复试验中某事件A恰好发生k次的概率.其中,n是重复试验的次数,p是一次试验中某事件A发生的概率,k是在n次独立重复试验中事件A恰好发生的次数,需要弄清公式中n,p【解题方法点拨】独立重复试验是相互独立事件的特例(概率公式也是如此),就像对立事件是互斥事件的特例一样,只要有“恰好”字样的用独立重复试验的概率公式计算更简单,就像有“至少”或“至多”字样的题用对立事件的概率公式计算更简单一样.【命题方向】典例1:如果ζ~B(100,12),当P(ζ=k)取得最大值时,k=50解:∵ζ~B(100,12当P(ξ=k)=C由组合数知,当k=50时取到最大值.故答案为:50.典例2:一个盒子里有2个黑球和m个白球(m≥2,且m∈N*).现举行摸奖活动:从盒中取球,每次取2个,记录颜色后放回.若取出2球的颜色相同则为中奖,否则不中.(Ⅰ)求每次中奖的概率p(用m表示);(Ⅱ)若m=3,求三次摸奖恰有一次中奖的概率;(Ⅲ)记三次摸奖恰有一次中奖的概率为f(p),当m为何值时,f(p)取得最大值?解:(Ⅰ)∵取出2球的颜色相同则为中奖,∴每次中奖的概率p=C(Ⅱ)若m=3,每次中奖的概率p=2∴三次摸奖恰有一次中奖的概率为C3(Ⅲ)三次摸奖恰有一次中奖的概率为f(p)=C31p(1-p)2=3p3﹣6p2+3p∴f′(p)=3(p﹣1)(3p﹣1),∴f(p)在(0,13)上单调递增,在(13,∴p=13时,f(p)取得最大值,即∴m=2,即m=2时,f(p)取得最大值.14.正态分布曲线的特点及曲线所表示的意义【知识点的认识】1.正态曲线及性质(1)正态曲线的定义函数φμ,σ(x)=12πσe-(x-μ)22σ2,x∈(﹣∞,+∞),其中实数μ和σ(σ>(2)正态曲线的解析式①指数的自变量是x定义域是R,即x∈(﹣∞,+∞).②解析式中含有两个常数:π和e,这是两个无理数.③解析式中含有两个参数:μ和σ,其中μ可取任意实数,σ>0这是正态分布的两个特征数.④解析式前面有一个系数为12πσ,后面是一个以e为底数的指数函数的形式,幂指数为2.正态分布(1)正态分布的定义及表示如果对于任何实数a,b(a<b),随机变量X满足P(a<X≤b)=abφμ,σ(x)dx,则称X的分布为正态分布,记作N(μ,(2)正态总体在三个特殊区间内取值的概率值①P(μ﹣σ<X≤μ+σ)=0.6826;②P(μ﹣2σ<X≤μ+2σ)=0.9544;③P(μ﹣3σ<X≤μ+3σ)=0.9974.3.正态曲线的性质正态曲线φμ,σ(x)=12πσe-(1)曲线位于x轴上方,与x轴不相交;(2)曲线是单峰的,它关于直线x=μ对称;(3)曲线在x=μ处达到峰值12π(4)曲线与x轴围成的图形的面积为1;(5)当σ一定时,曲线随着μ的变化而沿x轴平移;(6)当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.4.三个邻域会用正态总体在三个特殊区间内取值的概率值结合正态曲线求随机变量的概率.落在三个邻域之外是小概率事件,这也是对产品进行质量检测的理论依据.【解题方法点拨】正态分布是高中阶段唯一连续型随机变量的分布,这个考点虽然不是高考的重点,但在近几年新课标高考中多次出现,其中数值计算是考查的一个热点,考生往往不注意对这些数值的记忆而导致解题无从下手或计算错误.对正态分布N(μ,σ2)中两个参数对应的数值及其意义应该理解透彻并记住,且注意第二个数值应该为σ2而不是σ,同时,记住正态密度曲线的六条性质.【命题方向】题型一:概率密度曲线基础考察典例1:设有一正态总体,它的概率密度曲线是函数f(x)的图象,且f(x)=18πeA.10与8B.10与2C.8与10D.2与10解析:由18πe-(x-10)28=1答案:B.典例2:已知随机变量ξ服从正态分布N(2,σ2),且P(ξ<4)=0.8,则P(0<ξ<2)等于()A.0.6B.0.4C.0.3D.0.2解析:由P(ξ<4)=0.8知P(ξ>4)=P(ξ<0)=0.2,故P(0<ξ<2)=0.3.故选C.典例3:已知随机变量X服从正态分布N(3,1),且P(2≤X≤4)=0.6826,则P(X>4)等于()A.0.1588B.0.1587C.0.1586D.0.1585解析由正态曲线性质知,其图象关于直线x=3对称,∴P(X>4)=0.5﹣12P(2≤X≤4)=0.5-12×0.6826=题型二:正态曲线的性质典例1:若一个正态分布的概率密度函数是一个偶函数,且该函数的最大值为14(1)求该正态分布的概率密度函数的解析式;(2)求正态总体在(﹣4,4]的概率.分析:要确定一个正态分布的概率密度函数的解析式,关键是求解析式中的两个参数μ,σ的值,其中μ决定曲线的对称轴的位置,σ则与曲线的形状和最大值有关.解(1)由于该正态分布的概率密度函数是一个偶函数,所以其图象关于y轴对称,即μ=0.由12πσ=14φμ,σ(x)=142πe-x(2)P(﹣4<X≤4)=P(0﹣4<X≤0+4)=P(μ﹣σ<X≤μ+σ)=0.6826.点评:解决此类问题的关键是正确理解函数解析式与正态曲线的关系,掌握函数解析式中参数的取值变化对曲线的影响.典例2:设两个正态分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)的密度函数A.μ1<μ2,σ1<σ2B.μ1<μ2,σ1>σ2C.μ1>μ2,σ1<σ2D.μ1>μ2,σ1>σ2解析:根据正态分布N(μ,σ2)函数的性质:正态分布曲线是一条关于直线x=μ对称,在x=μ处取得最大值的连续钟形曲线;σ越大,曲线的最高点越低且较平缓;反过来,σ越小,曲线的最高点越高且较陡峭,故选A.答案:A.题型三:服从正态分布的概率计算典例1:设X~N(1,22),试求(1)P(﹣1<X≤3);(2)P(3<X≤5);(3)P(X≥5).分析:将所求概率转化到(μ﹣σ,μ+σ].(μ﹣2σ,μ+2σ]或[μ﹣3σ,μ+3σ]上的概率,并利用正态密度曲线的对称性求解.解析:∵X~N(1,22),∴μ=1,σ=2.(1)P(﹣1<X≤3)=P(1﹣2<X≤1+2)=P(μ﹣σ<X≤μ+σ)=0.6826.(2)∵P(3<X≤5)=P(﹣3<X≤﹣1),∴P(3<X≤5)=12[P(﹣3<X≤5)﹣P(﹣1<X≤3=12[P(1﹣4<X≤1+4)﹣P(1﹣2<X≤1+2=12[P(μ﹣2σ<X≤μ+2σ)﹣P(μ﹣σ<X≤μ+σ=12×(0.9544=0.1359.(3)∵P(X≥5)=P(X≤﹣3),∴P(X≥5)=12[1﹣P(﹣3<X≤5=12[1﹣P(1﹣4<X≤1+4=12[1﹣P(μ﹣2σ<X≤μ+2σ=12×(1﹣0.9544求服从正态分布的随机变量在某个区间取值的概率,只需借助正态曲线的性质,把所求问题转化为已知概率的三个区间上.典例2:随机变量ξ服从正态分布
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全培训44号令课件
- 员工培训我能行
- 神经精神疾病诊断学
- 2.3.2YARN服务工作流程
- 云南企业安全负责人培训课件
- 个人形象提升培训课件
- 2025 小学一年级数学下册基础巩固(数的读写)课件
- 测试技术与传感器课件:电感式传感器
- 2026年商标变更专员岗位面试题库含答案
- 2026年部门副经理工作考核标准及方法
- 选词填空(试题)外研版英语五年级上册
- 露地胡萝卜秋季栽培
- 海水淡化PX能量回收装置维护说明书
- 历年天津理工大学高数期末考试试卷及答案
- 妇产科学(第9版)第二章女性生殖系统解剖
- 中医经络之-特定穴课件
- GB/T 9122-2000翻边环板式松套钢制管法兰
- GB/T 16895.6-2014低压电气装置第5-52部分:电气设备的选择和安装布线系统
- 江苏省学业水平合格性考试复习课件:中外历史纲要上册主要考点线索梳理
- 煤矿岗位安全风险辨识评估
- 小提琴协奏曲《梁祝》音乐欣赏(33)课件
评论
0/150
提交评论