版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章勾股定理回顾与思考一、学习任务分析勾股定理作为古代智慧的结晶和现代数学的重要基石,揭示了直角三角形三边之间的数量关系,将形与数紧密联系起来,是几何学中的一颗璀璨明珠。勾股定理的应用蕴含着丰富的文化价值,更是后续有关几何度量运算和代数学习必要的基础,具有学科基础性与广泛的应用性,在现代科学和日常生活中发挥着举足轻重的作用。本节课是复习课,以学生自主探索为主,通过小组之间的合作与交流,增强学生应用意识,培养学生多方面的能力。二、学生起点分析学生知识技能基础:通过本章的学习,学生已经基本掌握了勾股定理及其逆定理的知识,并能应用勾股定理及其逆定理解决一些具体的实际问题,具备解决本课问题所需的知识基础。学生活动经验基础:在以前的数学学习中,学生已经经历了很多合作学习的过程,具有一定的合作学习的经验,具备一定的合作与交流的能力。八年级学生已初步建立几何直观、空间观念,有一定的推理能力,但还需进一步发展模型观念、应用意识,增强耐挫折能力和解决问题的信心。三、教学目标1.回顾本章知识,尤其是勾股定理的获得和验证的过程,体会勾股定理及其逆定理的广泛应用,同时构建本章知识体系。2.在回顾与思考的过程中,建立模型观念,提高解决问题、反思问题的能力。3.在反思和交流的过程中,体验学习的乐趣。通过对勾股定理历史的再认识,感受中华优秀传统文化。教学重点:自主梳理本章的知识,构建自己的认知结构。教学难点:勾股定理及其逆定理的综合运用。四、教学过程设计【第一环节】知识结构梳理1.活动内容(1)直角三角形的边、角之间分别存在怎样的关系?回答问题:①如图,在△ABC中,∠C=90°,则∠A+∠B=90°,a2+b2=c2。②下列各组数中,是勾股数的是()。A.1,2,3B.0.3,0.4,0.5C.6,8,12D.10,20,24(2)举例说明如何判断一个三角形是否为直角三角形。回答问题:已知,在△ABC中,AB=k,AC=k−1,BC=3,当k=时,∠C=90°。(3)请你举出一个生活中的实际问题,并运用勾股定理解决它。回答问题:如图,有一个长、宽都是4m,高为6m的长方体形纸盒,一只蚂蚁沿盒的外表面从点A处爬到点B处,那么这只蚂蚁爬行的最短路程为()。A.6mB.8mC.10mD.12m(4)你了解勾股定理的历史吗?请查阅资料,并与同伴进行交流。(5)梳理探索勾股定理的方法,你积累了哪些经验?以下是本章内容结构的一个参考框图。2.活动目的通过问题引导学生复习回顾与直角三角形有关的知识,避免枯燥的问答式分析,让学生的复习更具针对性。加强知识的前后联系,把勾股定理及其逆定理融入直角三角形的知识体系中,使知识系统化。学生通过回顾本章内容,梳理知识结构,形成知识系统,养成回顾与反思的习惯,获得知识系统的自主建构能力。3.注意事项在学生充分交流的基础上,教师引导学生形成本章的内容框架图。练习阶段,要留给学生独立思考的时间,使学生能够高效地合作交流。【第二环节】典例分析1.活动内容例1如图,方格纸中每个小方格的边长均为1cm,一只蚂蚁沿图中所示的折线由点A处爬到了点D处,它一共爬行了多少厘米?例2我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图)。已知大正方形的边长为10,直角三角形的两条直角边的比是3∶4,求小正方形的边长。变式1:在△ABC中,∠C=90°,BC∶AC=3∶4,AB=10,求△ABC的面积。变式2:在△ABC中,∠C=90°,BC∶AC=3∶4,△ABC的周长为12,求△ABC的面积。变式3:在△ABC中,三条边长度的比为3∶4∶5,△ABC的周长为48,求△ABC的面积。例3如图,一个透明圆柱形容器(容器厚度忽略不计)中装有水,点A是圆柱下底面外壁的一点,点B是上底面外壁与点A相对的一点,在点B正下方的水面紧贴内壁G处有一食物。(1)若圆柱高为9cm,底面半径为6cm,将一根木棒放入该容器,使木棒完全在容器中,求该容器内能放入木棒的最大长度。(2)若圆柱高为9cm,底面半径为12πcm,水深2cm,一只蚂蚁在点①蚂蚁从点A处沿圆柱侧面外壁爬行到点B处,求它爬行的最短路程。②蚂蚁从点A处出发,求它吃到食物需要爬行的最短路程。2.活动目的通过不同情境的问题,让学生进一步体会勾股定理及其逆定理的应用,提高解决问题的能力。3.注意事项在应用勾股定理及其逆定理解决问题的过程中,渗透数形结合思想,借助图形分析数量关系。教学中,可先让学生独立思考,再进行交流,教师给予必要的指导。【第三环节】拓展提升1.活动内容例4勾股定理的证明方法多样,其中的“面积法”给了小聪灵感,他惊喜地发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明勾股定理。下面是小聪利用图1证明勾股定理的过程。将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2。证明:连接DB,过点D作BC边上的高DF,则DF=EC=b−a,∵S四边形ADCB=S△ACD+S△ABC=12b2+12又∵S四边形ADCB=S△ADB+S△DCB=12c2+12a(b−a∴12b2+12ab=12c2+12a(b∴a2+b2=c2。请参照上述证法,完成下面的证明。将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°。求证:a2+b2=c2。2.活动目的让学生通过例子举一反三,运用数形结合思想用两种方法表示出五边形ACBED的面积,建立方程解决问题,发展几何直观和模型观念。3.注意事项该问题有一定的难度,可以根据班级学生的实际情况有选择地开展。【第四环节】交流小结1.活动内容师生交流总结:(1)你在学习过程中是否积极参与?是否与同伴进行了有效的合作交流?(2)你在梳理本章知识的过程中,积累了哪些经验?与同伴进行分享。2.活动目的鼓励学生结合本节课的学习谈谈自己的收获和感想,体会勾股定理及其逆定理的广泛应用。3.注意事项要让学生畅所欲言,表达自己的切身感受与实际收获,总结解决问题的思路与方法。【第五环节】课后作业1.活动内容(1)教科书复习题第2,6,9,11题。(2)补充题:如图,在△ABC中,AB=13cm,AC=5cm,BC边上的中线AD=6cm,求以BC为边长的正方形的面积。(3)查阅资料,完成一份关于勾股定理的历史的报告。2.活动目的通过作业,进一步巩固所学知识。通过查阅资料,进一步完善知识体系,形成自己的认知结构。3.注意事项作业(3)可以作为长作业在本节课后完成,也可以在本节课课前完成。如果课前完成,可以在本节课开始时,让学生进行交流。五、教学设计反思本节课是复习课,主要是利用勾股定理及其逆定理来解决实际问题。勾股定理是在学生已经掌握了直角三角形有关性质的基础上进行学习的,它揭示了一个三角形三条边之间的数量关系,而勾股定理的逆定理作用是判定某一个三角形是否是直角三角形。针对八年级学生的知识基础和心理特征,本节课的设计思路是引导学生“‘做’数学”,编排上由浅入深,让学生在自主探究与合作交流中解决问题,这样既遵循了学生的认知规律,又充分体现了“学生是数学学习的主人、教师是数学学习的组
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年郑州电力高等专科学校马克思主义基本原理概论期末考试模拟试卷
- 2024年安徽中医药高等专科学校马克思主义基本原理概论期末考试真题汇编
- 血管损伤护理查房
- 肾功能不全合并心衰治疗
- 基于人工智能的心理测评系统开发
- 心衰的治疗指南2024
- 数学对称图形在广告牌造型设计中的应用分析(本科)教学研究课题报告
- 2025年核电站用钢十年研发成果转化报告
- 2025年中级消防真题答案解析
- 中小企业转型升级策略报告
- 装卸服务协议书样式
- 江苏《精神障碍社区康复服务规范》
- 职工食堂承包经营投标书-1
- 生命体征监测考核评分标准
- 中考数学选择填空压轴题:函数的几何综合问题
- 全文版曼娜回忆录
- 第29课+中国特色社会主义进入新时代高一历史中外历史纲要上册
- 河北省2011中考数学试题及答案
- 体彩专管员考试题库
- 冠心病英文版
- 水电解质酸碱平衡失调
评论
0/150
提交评论