版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济南市师范大学附属中学2026届高二上数学期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的左、右焦点分别为,过点的直线与圆相切于点,交双曲线的右支于点,且点是线段的中点,则双曲线的渐近线方程为()A. B.C. D.2.某家庭准备晚上在餐馆吃饭,他们查看了两个网站关于四家餐馆的好评率,如下表所示,考虑每家餐馆的总好评率,他们应选择()网站①评价人数网站①好评率网站②评价人数网站②好评率餐馆甲100095%100085%餐馆乙1000100%200080%餐馆丙100090%100090%餐馆丁200095%100085%A.餐馆甲 B.餐馆乙C.餐馆丙 D.餐馆丁3.已知为抛物线上一点,点P到抛物线C的焦点的距离与它到y轴的距离之比为,则()A.1 B.C.2 D.34.直线与圆的位置关系是()A.相交 B.相切C.相离 D.相交或相切5.已知椭圆:的左、右焦点分别为,,下顶点为,直线与椭圆的另一个交点为,若为等腰三角形,则椭圆的离心率为()A. B.C. D.6.设为数列的前n项和,,且满足,若,则()A.2 B.3C.4 D.57.气象台正南方向的一台风中心,正向北偏东30°方向移动,移动速度为,距台风中心以内的地区都将受到影响,若台风中心的这种移动趋势不变,气象台所在地受到台风影响持续时间大约是()A. B.C. D.8.已知双曲线的焦点在y轴上,且实半轴长为4,虚半轴长为5,则双曲线的标准方程为()A.=1 B.=1C.=1 D.=19.在棱长为2的正方体中,为线段的中点,则点到直线的距离为()A. B.C. D.10.如图,在长方体中,若,,则异面直线和所成角的余弦值为()A. B.C. D.11.在等比数列中,,,则等于()A. B.5C. D.912.“五一”期间,甲、乙、丙三个大学生外出旅游,已知一人去北京,一人去两安,一人去云南.回来后,三人对去向作了如下陈述:甲:“我去了北京,乙去了西安.”乙:“甲去了西安,丙去了北京.”丙:“甲去了云南,乙去了北京.”事实是甲、乙、丙三人陈述都只对了一半(关于去向的地点仅对一个).根据以上信息,可判断下面说法中正确的是()A.甲去了西安 B.乙去了北京C.丙去了西安 D.甲去了云南二、填空题:本题共4小题,每小题5分,共20分。13.已知定义在R上的函数的导函数,且,则实数的取值范围为__________.14.经过点,,的圆的方程为______.15.函数在上的最大值为______________16.高二某位同学参加物理、政治科目的学考,已知这位同学在物理、政治科目考试中得A的概率分别为、,这两门科目考试成绩的结果互不影响,则这位考生至少得1个A的概率为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,在正方体中,E是棱的中点.(Ⅰ)求直线BE与平面所成的角的正弦值;(Ⅱ)在棱上是否存在一点F,使平面?证明你的结论.18.(12分)已知直线l的斜率为-2,且与两坐标轴的正半轴围成三角形的面积等于1.圆C的圆心在第四象限,直线l经过圆心,圆C被x轴截得的弦长为4.若直线x-2y-1=0与圆C相切,求圆C的方程19.(12分)某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每种单价(元)试销l天,得到如表单价(元)与销量(册)数据:单价(元)1819202122销量(册)6156504845(l)根据表中数据,请建立关于的回归直线方程:(2)预计今后的销售中,销量(册)与单价(元)服从(l)中的回归方程,已知每册书的成本是12元,书店为了获得最大利润,该册书的单价应定为多少元?附:,,,.20.(12分)求满足下列条件的双曲线的标准方程(1)焦点在x轴上,实轴长为4,实半轴长是虚半轴长的2倍;(2)焦点在y轴上,渐近线方程为,焦距长为21.(12分)已知函数(1)当时,求函数的极值;(2)当时,若恒成立,求实数a的取值范围22.(10分)某市对排污水进行综合治理,征收污水处理费,系统对各厂一个月内排出的污水量x吨收取的污水处理费y元,运行程序如图所示:INPUTxIFTHENELSEIFTHENELSEENDIFENDIFPRINTyEND(1)请写出y与x的函数关系式;(2)求排放污水150吨的污水处理费用.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】焦点三角形问题,可结合为三角形的中位线,判断:焦点三角形为直角三角形,并且有,,可由勾股定理得出关系,从而得到关系,从而求得渐近线方程.【详解】由题意知,,且点是线段的中点,点是线段的中点,为三角形的中位线故,故,由双曲线定义有由勾股定理有故则则,故故渐近线方程为:故选:D【点睛】双曲线上一点与两焦点构成的三角形,称为双曲线的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、||PF1|-|PF2||=2a,得到a,c的关系2、D【解析】根据给定条件求出各餐馆总好评率,再比较大小作答.【详解】餐馆甲的总好评率为:,餐馆乙的总好评率为:,餐馆丙的好评率为:,餐馆丁的好评率为:,显然,所以餐馆丁的总好评率最高.故选:D3、B【解析】先求出点的坐标,然后根据抛物线的定义和已知条件列方程求解即可【详解】因为为抛物线上一点,所以,得,所以,抛物线的焦点为,因为点P到抛物线C的焦点的距离与它到y轴的距离之比为,所以,化简得,因为,所以,故选:B4、A【解析】由直线恒过定点,且定点圆内,从而即可判断直线与圆相交.【详解】解:因为直线恒过定点,而,所以定点在圆内,所以直线与圆相交,故选:A.5、B【解析】由椭圆定义可得各边长,利用三角形相似,可得点坐标,再根据点在椭圆上,可得离心率.【详解】如图所示:因为为等腰三角形,且,又,所以,所以,过点作轴,垂足为,则,由,,得,因为点在椭圆上,所以,所以,即离心率,故选:B.6、B【解析】由已知条件可得数列为首项为2,公差为2的等差数列,然后根据结合等差数列的求和公式可求得答案【详解】在等式中,令,可得,所以数列为首项为2,公差为2的等差数列,因为,所以,化简得,,解得或(舍去),故选:B7、D【解析】利用余弦定理进行求解即可.【详解】如图所示:设台风中心为,,小时后到达点处,即,当时,气象台所在地受到台风影响,由余弦定理可知:,于是有:,解得:,所以气象台所在地受到台风影响持续时间大约是,故选:D8、D【解析】根据双曲线的性质求解即可.【详解】双曲线的焦点在y轴上,且实半轴长为4,虚半轴长为5,可得a=4,b=5,所以双曲线方程为:=1.故选:D.9、D【解析】根据正方体的性质,在直角△中应用等面积法求到直线的距离.【详解】由正方体的性质:面,又面,故,直角△中,若到上的高为,∴,而,,,∴.故选:D.10、D【解析】根据长方体中,异面直线和所成角即为直线和所成角,再结合余弦定理即可求解.【详解】解:连接、,如下图所示由图可知,在长方体中,且,所以,所以异面直线和所成角即为,又,,由余弦定理可得∶故选:D.11、D【解析】由等比数列的项求公比,进而求即可.【详解】由题设,,∴故选:D12、D【解析】根据题意,先假设甲去了北京正确,则可分析其他人的陈述是否符合题意,再假设乙去西安正确,分析其他人的陈述是否符合题意,即可得答案.【详解】由题意得,甲、乙、丙三人的陈述都只对了一半,假设甲去了北京正确,对于甲的陈述:则乙去西安错误,则乙去了云南;对于乙的陈述:甲去了西安错误,则丙去了北京正确;对于丙的陈述:甲去了云南错误,乙去了北京也错误,故假设错误.假设乙去了西安正确,对于甲的陈述:则甲去了北京错误,则甲去了云南;对于乙的陈述:甲去了西安错误,则丙去了北京正确;对于丙的陈述:甲去了云南正确,乙去了北京错误,此种假设满足题意,故甲去了云南.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意可得在R上单调递增,再由,利用函数的单调性转化为关于的不等式求解【详解】定义在R上的函数的导函数,在R上单调递增,由,得,即实数的取值范围为故答案为:14、【解析】设所求圆的方程为,然后将三个点的坐标代入方程中解方程组求出的值,可得圆的方程【详解】设所求圆的方程为,则,解得,所以圆的方程为,即,故答案为:15、【解析】对原函数求导得,令,解得或,且所以原函数在上的最大值为考点:1.函数求导;2.利用导函数求最值16、【解析】根据给定条件利用相互独立事件、对立事件的概率公式计算作答.【详解】依题意,这位考生至少得1个A对立事件为物理、政治科目考试都没有得A,其概率为,所以这位考生至少得1个A的概率为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)详见解析【解析】设正方体的棱长为1.如图所示,以为单位正交基底建立空间直角坐标系.(Ⅰ)依题意,得,所以.在正方体中,因为,所以是平面的一个法向量,设直线BE和平面所成的角为,则.即直线BE和平面所成的角的正弦值为.(Ⅱ)在棱上存在点F,使.事实上,如图所示,分别取和CD的中点F,G,连结.因,且,所以四边形是平行四边形,因此.又E,G分别为,CD的中点,所以,从而.这说明,B,G,E共面,所以.因四边形与皆为正方形,F,G分别为和CD的中点,所以,且,因此四边形是平行四边形,所以.而,,故.18、【解析】先根据题意设直线方程,由条件求出直线的方程,再根据条件列出等量关系,求出圆心和半径,进而求得答案.【详解】解:设直线l的方程为y=-2x+b(b>0),它与两坐标轴的正半轴的交点依次为,,因为直线l与两坐标轴的正半轴所围成的三角形的面积等于1,所以,解得b=2,所以直线l的方程是,即由题意,可设圆C的圆心为,半径为r,又因为圆C被x轴截得的弦长等于4,所以①,由于直线与圆相切,所以圆心C到直线的距离②,所以①②联立得:,解得:或,又圆心在第四象限,所以,则圆心,,所以圆C方程是.19、(1)(2)当单价应定为22.5元时,可获得最大利润【解析】(l)先计算的平均值,再代入公式计算得到(2)计算利润为:计算最大值.【详解】解:(1),,,所以对的回归直线方程为:(2)设获得的利润为,,因为二次函数的开口向下,所以当时,取最大值,所以当单价应定为22.5元时,可获得最大利润【点睛】本题考查了回归方程,函数的最值,意在考查学生的计算能力.20、(1)(2)【解析】(1)(2)直接由条件解出即可得到双曲线方程.【小问1详解】由题意有,解得:,则双曲线的标准方程为:【小问2详解】由题意有,解得:,则双曲线的标准方程为:21、(1)极大值;极小值(2)【解析】(1)利用导数来求得的极大值和极小值.(2)由不等式分离常数,通过构造函数法,结合导数来求得的取值范围.【小问1详解】当时,,,令,可得或2所以在区间递增;在区间递减.故当时.函数有极大值,故当时,函数有极小值;【小问2详解】由,有,可化为,令,有,令,有,令,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年闽北职业技术学院马克思主义基本原理概论期末考试笔试真题汇编
- 2024年天津开放大学马克思主义基本原理概论期末考试笔试真题汇编
- 2024年扬州大学广陵学院马克思主义基本原理概论期末考试笔试题库
- 2025年《公共基础知识》教师招聘冲刺押题
- 浙江省金砖联盟2025-2026学年高二上学期11月期中考试政治试题
- 脚踏板动模仁制造工艺研究
- 康养培训工作方案
- 应用管理介绍课件
- 富平柿饼基地方案
- 食用菌种植合作协议
- 智慧农业中的精准灌溉与施肥技术
- 沥青维护工程投标方案技术标
- 深圳机场突发事件应急预案
- 水电站建筑物课程设计
- 个人借款合同个人借款协议
- 生物科技股份有限公司GMP质量手册(完整版)资料
- 儿童行为量表(CBCL)(可打印)
- 地貌学与第四纪地质学总结
- 2023年德语专业四级考试真题
- GB/T 36713-2018能源管理体系能源基准和能源绩效参数
- 温度仪表基础知识课件
评论
0/150
提交评论