版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都市双流中学2026届高二上数学期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数,的最小值为()A.2 B.3C. D.2.“”是“直线与圆相切”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.在平行六面体ABCD﹣A1B1C1D1中,AC与BD的交点为M,设=,=,=,则=()A.++ B.+C.++ D.+4.若(为虚数单位),则复数在复平面内的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限5.已知双曲线左右焦点为,,过的直线与双曲线的右支交于P,Q两点,且,若为以Q为顶角的等腰三角形,则双曲线的离心率为()A. B.C. D.6.在如图所示的棱长为1的正方体中,点P在侧面所在的平面上运动,则下列四个命题中真命题的个数是()①若点P总满足,则动点P的轨迹是一条直线②若点P到点A的距离为,则动点P的轨迹是一个周长为的圆③若点P到直线AB的距离与到点C的距离之和为1,则动点P的轨迹是椭圆④若点P到平面的距离与到直线CD的距离相等,则动点P的轨迹是抛物线A.1 B.2C.3 D.47.对于两个平面、,“内有三个点到的距离相等”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.函数的大致图象是()A. B.C. D.9.直线的倾斜角为()A. B.C. D.10.某口罩生产商为了检验产品质量,从总体编号为001,002,003,…,499,500的500盒口罩中,利用下面的随机数表选取10个样本进行抽检,选取方法是从下面的随机数表第1行第5列的数字开始由左向右读取,则选出的第3个样本的编号为()160011661490844511657388059052274114862298122208075274958035696832506128473975345862A.148 B.116C.222 D.32511.椭圆的焦点坐标为()A. B.C. D.12.在棱长为4的正方体中,为的中点,点P在正方体各棱及表面上运动且满足,则点P轨迹围成的图形的面积为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的前项和则____________________14.若圆心坐标为圆被直线截得的弦长为,则圆的半径为______.15.若双曲线的左、右焦点为,,直线与双曲线交于两点,且,为坐标原点,又,则该双曲线的离心率为__________.16.已知圆和直线.(1)求直线l所经过的定点的坐标,并判断直线与圆的位置关系;(2)求当k取什么值,直线被圆截得的弦最短,并求这条最短弦的长.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:的左、右焦点分别为,,离心率为,且过点.(1)求椭圆的标准方程;(2)若过点的直线与椭圆相交于,两点(A、B非椭圆顶点),求的最大值.18.(12分)已知抛物线C的对称轴是y轴,点在曲线C上.(1)求抛物线的标准方程;(2)过抛物线焦点的倾斜角为直线l与抛物线交于A、B两点,求线段AB的长度.19.(12分)已知圆,圆.(1)试判断圆C与圆M的位置关系,并说明理由;(2)若过点的直线l与圆C相切,求直线l的方程.20.(12分)为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12(1)第二小组的频率是多少?样本量是多少?(2)若次数在110以上(含110次)为达标,则该校全体高一年级学生的达标率是多少?(3)样本中不达标的学生人数是多少?(4)第三组的频数是多少?21.(12分)已知是等差数列,是各项都为正数的等比数列,,再从①;②;③这三个条件中选择___________,___________两个作为已知.(1)求数列的通项公式;(2)求数列的前项和.22.(10分)已知椭圆C的中心在原点,焦点在x轴上,焦距为2,离心率为(1)求椭圆C的方程;(2)设直线l经过点M(0,1),且与椭圆C交于A,B两点,若,求直线l的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求导函数,分析单调性即可求解最小值【详解】由,得,当时,,单调递减;当时,,单调递增∴当时,取得最小值,且最小值为故选:B.2、A【解析】根据题意,结合直线与圆的位置关系求出,即可求解.【详解】根据题意,由直线与圆相切,知圆心到直线的距离,解得或,因此“”是“直线与圆相切”的充分不必要条件.故选:A.3、B【解析】利用向量三角形法则、平行四边形法则、向量共线定理即可得出【详解】如图所示,∵=+,又=,=-,=,∴=+,故选:B4、A【解析】根据复数运算法则求出z=a+bi形式,根据复数的几何意义即可求解.【详解】,z对应的点在第一象限.故选:A5、C【解析】由双曲线的定义得出中各线段长(用表示),然后通过余弦定理得出的关系式,变形后可得离心率【详解】由题意,又,所以,从而,,,中,,中.,所以,,所以,故选:C6、C【解析】根据线面关系、距离关系可分别对每一个命题判断.【详解】若点P总满足,又,,,可得对角面,因此点P的轨迹是直线,故①正确若点P到点A的距离为,则动点P的轨迹是以点B为圆心,以1为半径的圆(在平面内),因此圆的周长为,故②正确点P到直线AB的距离PB与到点C的距离PC之和为1,又,则动点P的轨迹是线段BC,因此③不正确点P到平面的距离(即到直线的距离)与到直线CD的距离(即到点C的距离)相等,则动点P的轨迹是以线段BC的中点为顶点,直线BC为对称轴的抛物线(在平面内),因此④正确故有①②④三个故选:C7、B【解析】根据平面的性质分别判断充分性和必要性.【详解】充分性:若内有三个点到的距离相等,当这三个点不在一条直线上时,可得;当这三个点在一条直线上时,则、平行或相交,故充分性不成立;必要性:若,则内每个点到的距离相等,故必要性成立,所以“内有三个点到的距离相等”是“”的必要不充分条件.故选:B.8、A【解析】由得出函数是奇函数,再求得,,运用排除法可得选项.【详解】法一:由函数,则,所以函数为奇函数,图象关于原点对称,所以排除B;因为,所以排除D;因为,所以排除C,故选:A.【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.9、D【解析】由直线斜率概念可写出倾斜角的正切值,进而可求出倾斜角.【详解】因为直线的斜率为,所以倾斜角.故选D【点睛】本题主要考查直线的倾斜角,由斜率的概念,即可求出结果.10、A【解析】按随机数表法逐个读取数字即可得到答案.【详解】根据随机数表法读取的数字分别为:116,614(舍),908(舍),445,116(舍),573(舍),880(舍),590(舍),522(舍),741(舍),148,故选出的第3个样本的编号为148.故选:A.11、B【解析】根据方程可得,且焦点轴上,然后可得答案.【详解】由椭圆的方程可得,且焦点在轴上,所以,即,故焦点坐标为故选:B12、A【解析】构造辅助线,找到点P轨迹围成的图形为长方形,从而求出面积.【详解】取的中点E,的中点F,连接BE,EF,AF,则由于为的中点,可得,所以∠CBE=∠ECN,从而∠BCN+∠CBE=∠BCN+∠ECN=90°,所以BE⊥CN,又EF⊥平面,平面,所以EF⊥CN,又因为BEEF=E,所以CN⊥平面ABEF,所以点P轨迹围成的图形为矩形ABEF,又,所以矩形ABEF面积为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据数列中与的关系,即可求出通项公式.【详解】当时,,当时,,时,也适合,综上,,(),故答案为:【点睛】本题主要考查了数列前n项和与通项间的关系,属于容易题.14、【解析】利用垂径定理计算即可.【详解】设圆的半径为,则,得.故答案为:.15、【解析】根据直线和双曲线的对称性,结合圆的性质、双曲线的定义、三角形面积公式、双曲线离心率公式进行求解即可.【详解】由直线与双曲线的对称性可知,点与点关于原点对称,在三角形中,,所以,是以为直径的圆与双曲线的交点,不妨设在第一象限,,因为圆是以为直径,所以圆的半径为,因为点在圆上,也在双曲线上,所以有,联立化简可得,整理得,,所以,由所以,又因为,联立可得,,因为为圆的直径,所以,即,,所以离心率.故答案为:【点睛】关键点睛:利用直线和双曲线的对称性,结合圆的性质进行求解是解题的关键.16、(1)直线过定点P(4,3),直线和圆总有两个不同交点(2)k=1,【解析】(1)把直线方程化为点斜式方程即可;(2)由圆的性质知,当直线与PC垂直时,弦长最短.【小问1详解】直线方程可化为,则直线过定点P(4,3),又圆C标准方程为,圆心为,半径为,而,所以点P在圆内,所以不论k取何值,直线和圆总有两个不同交点.【小问2详解】由圆的性质知,当直线与PC垂直时,弦长最短.,所以k=1时弦长最短.弦长为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据离心率和点在椭圆上建立方程,结合,然后解出方程即可(2)设直线的斜率为,联立直线与椭圆的方程,然后利用韦达定理表示出,两点的坐标关系,并表示出为直线斜率的函数,然后求出的最大值【小问1详解】由椭圆过点,则有:由可得:解得:则椭圆的方程为:【小问2详解】由(1)得,,已知直线不过椭圆长轴顶点则直线的斜率不为,设直线的方程为:设,,联立直线方程和椭圆方程整理可得:故是恒成立的根据韦达定理可得:,则有:由,可得:所以的最大值为:18、(1)(2)16【解析】(1)设抛物线的标准方程为:,再代入求解即可.(2)根据焦点弦公式求解即可.【小问1详解】由题意知抛物线C的对称轴是y轴,点在曲线C上,所以抛物线开口向上,设抛物线的标准方程为:,代入点的坐标得:,解得则抛物线的标准方程为:.【小问2详解】焦点,则直线的方程是,设,,由得,,所以,则,故.19、(1)圆C与圆M相交,理由见解析(2)或【解析】(1)利用圆心距与半径的关系即可判断结果;(2)讨论,当直线l的斜率不存在时则方程为,当直线l的斜率存在时,设其方程为,利用圆心到直线的距离等于半径计算即可得出结果.【小问1详解】把圆M的方程化成标准方程,得,圆心为,半径.圆C的圆心为,半径,因为,所以圆C与圆M相交,【小问2详解】①当直线l的斜率不存在时,直线l的方程为到圆心C距离为2,满足题意;②当直线l的斜率存在时,设其方程为,由题意得,解得,故直线l的方程为.综上,直线l的方程为或.20、(1)0.08,150;(2)88%;(3)18;(4)51.【解析】频率分布直方图以面积的形式反映数据落在各小组内的频率大小,所以计算面积之比即为所求小组的频率.可用此方法计算(1),(2),由公式直接计算可得(1)中样本容量;根据(2)问中的达标率,可计算不达标率,从而求出不达标人数,可得(3);单独计算第三组的频率,由公式计算频数,可求出(4).【小问1详解】频率分布直方图以面积形式反映数据落在各小组内的频率大小,因此第二小组的频率为=0.08所以样本容量==150.【小问2详解】由直方图可估计该校高一年级学生的达标率为×100%=88%.【小问3详解】由(1)(2)知达标率为88%,样本量为150,不达标的学生频率为1-0.88=0.12所以样本中不达标的学生人数为150×0.12=18(人)【小问4详解】第三小组的频率为=0.34又因为样本量为150,所以第三组的频数为150×0.34=5121、答案见解析【解析】(1)根据题设条件可得关于基本量的方程组,求解后可得的通项公式.(2)利用公式法可求数列的前项和.【详解】解:选择条件①和条件②(1)设等差数列的公差为,∴解得:,.∴,.(2)设等比数列的公比为,,∴解得,.设数列的前项和为,∴.选择条件①和条件③:(1)设等差数列的公差为,∴解得:,.∴.(2),设等比数列的公比为,.∴,解得,.设数列的前项和为,∴.选择条件②和条件③:(1)设等比数列的公比为,,∴,解得,,.设等差数列的公差为,∴,又,故.∴.(2)设数列的前项和为,由(1)可知.【点睛】方法点睛:等差数列或等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北财税职业学院《大学英语》2023-2024学年第一学期期末试卷
- 2026届西南名校联盟3+3+3高考备考诊断联考(一)政治试题含答案
- 2026年护士招聘面试题及答案外科
- 2026贵州公路建设养护集团秋招面笔试题及答案
- 2026届福建漳州三中高三上学期12月考数学试题含答案
- 2026贵州港航集团秋招面试题及答案
- 2026广州工控集团校招面笔试题及答案
- 2026年上海建工BIM工程师BIM技术考试题集含答案
- 2026广西壮族自治区地方国企集团招聘试题及答案
- 2026年大学辅导员面试题库与答案参考手册
- 四川省土地开发项目预算定额标准
- 执业药师考勤管理制度表
- 供应链中台体系构建与应用
- 宿舍家具拆除方案(3篇)
- 设备变更方案(3篇)
- 食堂菜价定价管理办法
- 16.迷你中线导管带教计划
- 大学军事理论考试题及答案
- 2025社交礼仪资料:15《现代社交礼仪》教案
- 菏泽风电项目可行性研究报告
- T/CCMA 0114-2021履带式升降工作平台
评论
0/150
提交评论