版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届上海市宝山区海滨中学高一数学第一学期期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.定义在上的偶函数满足:对任意的,,,有,且,则不等式的解集为A. B.C. D.2.下列函数中是增函数的为()A. B.C. D.3.已知是定义在区间上的奇函数,当时,.则关于的不等式的解集为A. B.C. D.4.设,,,则,,的大小关系为()A. B.C. D.5.某几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.6.设命题,则命题p的否定为()A. B.C. D.7.已知向量=(1,2),=(2,x),若⊥,则|2+|=()A. B.4C.5 D.8.圆与圆的位置关系是A.相离 B.外切C.相交 D.内切9.曲线与直线在轴右侧的交点按横坐标从小到大依次记为,,,,,…,则等于A. B.2C.3 D.10.已知函数满足∶当时,,当时,,若,且,设,则()A.没有最小值 B.的最小值为C.的最小值为 D.的最小值为二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,则的值为12.____13.设向量,,则__________14.若,则_____15.函数的最大值为___________.16.在中,已知,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为保护环境,污水进入河流前都要进行净化处理.我市工业园区某工厂的污水先排入净化池,然后加入净化剂进行净化处理.根据实验得出,在一定范围内,每放入1个单位的净化剂,在污水中释放的浓度y(单位:毫克/立方米)随着时间x(单位:小时)变化的函数关系式近似为.若多次加进净化剂,则某一时刻净化剂在污水中释放的浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当净化剂在污水中释放的浓度不低于4(毫克/立方米)时,它才能起到净化污水的作用.(1)若投放1个单位的净化剂4小时后,求净化剂在污水中释放的浓度;(2)若一次投放4个单位的净化剂并起到净化污水的作用,则净化时间约达几小时?(结果精确到0.1,参考数据:,)(3)若第一次投放1个单位的净化剂,3小时后再投放2个单位的净化剂,设第二次投放t小时后污水中净化剂浓度为(毫克/立方米),其中,求的表达式和浓度的最小值.18.已知圆,直线,点在直线上,过点作圆的切线,切点分别为.(Ⅰ)若,求点的坐标;(Ⅱ)求证:经过三点圆必过定点,并求出所有定点的坐标.19.设条件,条件(1)在条件q中,当时,求实数x的取值范围.(2)若p是q的充分不必要条件,则实数m的取值范围.20.已知函数f(x)=lnx+2x,若f(x2-4)<2,求实数x的取值范围.21.已知集合A={x|},B={x||x-a|<2},其中a>0且a≠1(1)当a=2时,求A∪B及A∩B;(2)若集合C={x|logax<0}且C⊆B,求a的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据对任意的,,,有,判断函数的单调性,结合函数的奇偶性和单调性之间的性质,将不等式转化为不等式组,数形结合求解即可详解】因为对任意的,,当,有,所以,当函数为减函数,又因为是偶函数,所以当时,为增函数,,,作出函数的图象如图:等价为或,由图可知,或,即不等式的解集为,故选A【点睛】本题主要考查抽象函数的奇偶性与单调性的应用,属于难题.将奇偶性与单调性综合考查一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.2、D【解析】根据基本初等函数的性质逐项判断后可得正确的选项.【详解】对于A,为上的减函数,不合题意,舍.对于B,为上的减函数,不合题意,舍.对于C,在为减函数,不合题意,舍.对于D,为上的增函数,符合题意,故选:D.3、A【解析】分析:根据函数奇偶性的性质将不等式进行转化为一般的不等式求解即可详解:∵,函数f(x)为奇函数,∴,又f(x)是定义在[−1,1]上的减函数,∴,即,解得∴不等式的解集为故选A点睛:解题的关键是根据函数的奇偶性将不等式化为或的形式,然后再根据单调性将函数不等式化为一般的不等式求解,解题时不要忘了函数定义域的限制4、D【解析】根据指数函数和对数函数的单调性,再结合0,1两个中间量即可求得答案.【详解】因为,,,所以.故选:D.5、A【解析】由题可得该几何体为正方体的一半,截去了一个三棱锥,即得.【详解】由三视图可知该几何体为正方体的一半,截去了一个三棱锥,如图,则其体积为.故选:A.6、C【解析】由全称命题的否定是特称命题即可得解.【详解】根据全称命题的否定是特称命题可知,命题的否定命题为,故选:C7、C【解析】根据求出x的值,再利用向量的运算求出的坐标,最后利用模长公式即可求出答案【详解】因为,所以解得,所以,因此,故选C【点睛】本题主要考查向量的坐标预算以及模长求解,还有就是关于向量垂直的判定与性质8、D【解析】圆的圆心,半径圆的圆心,半径∴∴∴两圆内切故选D点睛:判断圆与圆的位置关系的常见方法(1)几何法:利用圆心距与两半径和与差的关系(2)切线法:根据公切线条数确定9、B【解析】曲线与直线在轴右侧的交点按横坐标从小到大依次记为,曲线与直线在轴右侧的交点按横坐标转化为根,解简单三角方程可得对应的横坐标分别为,,故选B.【思路点睛】本题主要考查三角函数的图象以及简单的三角方程,属于中档题.解答本题的关键是将曲线与直线在轴右侧的交点按横坐标转化为根,可得或,令取特殊值即可求得,从而可得.10、B【解析】根据已知条件,首先利用表示出,然后根据已知条件求出的取值范围,最后利用一元二次函数并结合的取值范围即可求解.【详解】∵且,则,且,∴,即由,∴,又∵,∴当时,,当时,,故有最小值.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】,故答案为3.12、-1【解析】根据和差公式得到,代入化简得到答案.【详解】故答案为:【点睛】本题考查了和差公式,意在考查学生的计算能力.13、【解析】,故,故填.14、【解析】首先求函数,再求的值.【详解】设,则所以,即,,.故答案为:15、【解析】根据二次函数的性质,结合给定的区间求最大值即可.【详解】由,则开口向上且对称轴为,又,∴,,故函数最大值为.故答案为:.16、11【解析】由.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)6毫克/立方米(2)7.1(3),;的最小值为12毫克/立方米【解析】(1)由函数解析式,将代入即可得解;(2)分和两种情况讨论,根据题意列出不等式,从而可得出答案;(3)根据题意写出函数的解析式,再根据基本不等式即可求得最小值.【小问1详解】解:由,当时,,所以若投放1个单位的净化剂4小时后,净化剂在污水中释放的浓度为6毫克/立方米;【小问2详解】解:因为净化剂在污水中释放的浓度不低于4(毫克/立方米)时,它才能起到净化污水的作用,当时,令,得恒成立,所以当时,起到净化污水的作用,当时,令,得,则,所以,综上所述当时,起到净化污水的作用,所以若一次投放4个单位的净化剂并起到净化污水的作用,则净化时间约达7.1小时;【小问3详解】解:因为第一次投入1个单位的净化剂,3小时后再投入2个单位净化剂,要计算的是第二次投放t小时后污水中净化剂浓度为,所以,,因为,所以,当且仅当,即时取等号,所以,,当时,取最小值12毫克/立方米.18、(1)点的坐标为或(2)见解析,过的圆必过定点和【解析】(1)设,由题可知,由点点距得到,解得参数值;(2)设的中点为,过三点的圆是以为直径的圆,根据圆的标准方程得到圆,根据点P在直线上得到,代入上式可求出,进而得到定点解析:(Ⅰ)设,由题可知,即,解得:,故所求点的坐标为或.(2)设的中点为,过三点的圆是以为直径的圆,设,则又∵圆又∵代入(1)式,得:整理得:无论取何值时,该圆都经过的交点或综上所述,过的圆必过定点和点睛:这个题目考查的是直线和圆的位置关系;一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;还有就是在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值19、(1)(2)【解析】(1)将代入,整理得,求解一元二次不等式即可;(2)由题可知条件为,是的子集,列不等式组即可求解.【小问1详解】解:当时,条件,即,解得,故的取值范围为:.【小问2详解】解:由题知,条件,条件,即,∵是的充分不必要条件,故是的子集,∴,解得,故实数m的取值范围为.20、或【解析】利用函数单调性解决抽象不等式.试题解析:因为函数f(x)=lnx+2x在定义域上单调递增,且f(1)=ln1+2=2,所以由f(x2-4)<2得,f(x2-4)<f(1),所以0<x2-4<1,解得-<x<-2或2<x<.21、(1)A∪B={x|x>0},A∩B={x|2<x<4};(2){a|1<a≤2},【解析】(1)化简集合A,B,利用并集及交集的概念运算即得;(2)分a>1,0<a<1讨论,利用条件列出不等式即得.【小问1详解】∵A={x|2x>4}={x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《烟文化与人类健康》课件-6.1烟文化传统礼仪
- 小学六年级科学实验操作规范手册
- 医疗机构消毒与感染预防规范
- 《烟文化与人类健康》课件-3.9新型烟草
- 工会安全教育培训感想课件
- 师德师风培训心得体会模板
- 第节人体的感觉和感觉器官课件-苏教版生物八年级上册
- 水处理厂系统升级方案
- 煤矿智能自动化设备采购方案
- 中学生规范礼仪培训教案
- 2026年江苏医药职业学院单招职业技能测试题库及答案详解一套
- 2026届上海市六校生物高一上期末达标检测模拟试题含解析
- 2025年12月嘉兴海宁水务集团下属企业公开招聘工作人员3人笔试备考重点试题及答案解析
- 2025年卫生管理(副高)考试题库及答案
- 《战后资本主义的新变化》优教课件
- 人员罢工应急预案
- 2025东方航空校招面试题及答案
- 私密医院合作合同范本
- 国家开放大学电大专科《农村社会学》2025年期末试题及答案
- 颈动脉内膜剥脱术操作规范标准
- 浅谈采煤沉陷区调查与监测方法
评论
0/150
提交评论