版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
蒙古北京八中乌兰察布分校2026届高二数学第一学期期末监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线的焦点为F,准线为l,点P是准线l上的动点,若点A在抛物线C上,且,则(O为坐标原点)的最小值为()A. B.C. D.2.在公比为为q等比数列中,是数列的前n项和,若,则下列说法正确的是()A. B.数列是等比数列C. D.3.为了解青少年视力情况,统计得到名青少年的视力测量值(五分记录法)的茎叶图,其中茎表示个位数,叶表示十分位数,则该组数据的中位数是()A. B.C. D.4.已知数列满足:且,则此数列的前20项的和为()A.621 B.622C.1133 D.11345.校庆当天,学校需要在靠墙的位置用围栏围起一个面积为200平方米的矩形场地.用来展示校友的书画作品.靠墙一侧不需要围栏,则围栏总长最小需要()米A.20 B.40C. D.6.设等差数列的公差为d,且,则()A.12 B.4C.6 D.87.已知,则下列不等式一定成立的是()A B.C. D.8.双曲线的左、右焦点分别为、,点P在双曲线右支上,,,则C的离心率为()A. B.2C. D.9.已知斜率为1的直线与椭圆相交于A、B两点,O为坐标原点,AB的中点为P,若直线OP的斜率为,则椭圆C的离心率为()A. B.C. D.10.点M在圆上,点N在直线上,则|MN|的最小值是()A. B.C. D.111.已知为坐标原点,点的坐标为,点的坐标满足,则的最小值为()A B.C. D.412.直线的倾斜角的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.长方体中,,,已知点H,A,三点共线,且,则点H到平面ABCD的距离为______14.已知点P在圆上,已知,,则的最小值为___________.15.某班学号的学生铅球测试成绩如下表:学号12345678成绩9.17.98.46.95.27.18.08.1可以估计这8名学生铅球测试成绩的第25百分位数为___________.16.某个弹簧振子在振动过程中的位移y(单位:mm)与时间t(单位:s)之间的关系为,则当s时,弹簧振子的瞬时速度为_________mm/s.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆,直线(1)判断直线与圆的位置关系;(2)若直线与圆交于不同两点,且,求直线的方程18.(12分)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:(1)已知样本中分数在[40,50)的学生有5人,试估计总体中分数小于40的人数;(2)试估计测评成绩的75%分位数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例19.(12分)已知直线经过两条直线和的交点,且与直线垂直(1)求直线的一般式方程;(2)若圆的圆心为点,直线被该圆所截得的弦长为,求圆的标准方程20.(12分)求下列不等式的解集:(1);(2)21.(12分)已知函数的图象在点P(0,f(0))处的切线方程是(1)求a、b的值;(2)求函数的极值.22.(10分)函数(1)求在上的单调区间;(2)当时,不等式恒成立,求实数a的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】依题意得点坐标,作点关于的对称点,则,求即为最小值【详解】如图所示:作点关于的对称点,连接,设点,不妨设,由题意知,直线l方程为,则,得所以,得,所以由,当三点共线时取等号,又所以最小值为故选:D2、D【解析】根据等比数列的通项公式、前项和公式的基本量运算,即可得到答案;【详解】,,故A错误;,,显然数列不是等比数列,故B错误;,故C错误;,,故D成立;故选:D3、B【解析】将样本中的数据由小到大进行排列,利用中位数的定义可得结果.【详解】将样本中的数据由小到大进行排列,依次为:、、、、、、、、、,因此,这组数据的中位数为.故选:B.4、C【解析】这个数列的奇数项是公差为2的等差数列,偶数项是公比为2的等比数列,只要分开来计算即可.【详解】由于,所以当n为奇数时,是等差数列,即:共10项,和为;,共10项,其和为;∴该数列前20项的和;故选:C.5、B【解析】在出矩形中,设,得到,结合基本不等式,即可求解【详解】如图所示,在矩形中,设,则,根据题意,可得矩形围栏总长为因为,可得,当且仅当时,即时,等号成立,即围栏总长最小需要米.故选:B.6、B【解析】利用等差数列的通项公式的基本量计算求出公差.【详解】,所以.故选:B7、B【解析】运用不等式的性质及举反例的方法可求解.【详解】对于A,如,满足条件,但不成立,故A不正确;对于B,因为,所以,所以,故B正确;对于C,因为,所以,所以不成立,故C不正确;对于D,因为,所以,所以,故D不正确.故选:B8、C【解析】由,所以为直角三角形,根据双曲线的定义结合勾股定理可得答案.【详解】由,所以为直角三角形.,根据双曲线的定义可得所以,即,即,所以故选:C9、B【解析】这是中点弦问题,注意斜率与椭圆a,b之间的关系.【详解】如图:依题意,假设斜率为1的直线方程为:,联立方程:,解得:,代入得,故P点坐标为,由题意,OP的斜率为,即,化简得:,,,;故选:B.10、C【解析】根据题意可知圆心,又由于线外一点到已知直线的垂线段最短,结合点到直线的距离公式,即可求出结果.【详解】由题意可知,圆心,半径为,所以圆心到的距离为,所以的最小值为.故选:C.11、B【解析】由数量积的坐标运算求得,令,化为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案【详解】解:根据题意可得,、,所以,令,由约束条件作出可行域如下图所示,由得,即,由,得,由图可知,当直线过时,直线在轴上的截距最小,有最小值为,即,所以故选:B12、A【解析】由直线方程求得直线斜率的范围,再由斜率等于倾斜角的正切值可得直线的倾斜角的取值范围.【详解】∵直线的斜率,,设直线的倾斜角为,则,解得.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】在长方体中,以点A为原点建立空间直角坐标系,利用已知条件求出点H的坐标作答.【详解】在长方体中,以点A为原点建立如图所示的空间直角坐标系,则,,因点H,A,三点共线,令,点,则,又,则,解得,所以点到平面ABCD的距离为.故答案为:14、【解析】推导出极化恒等式,即,结合最小值为,求出最小值.【详解】由题意,取线段AB中点,则,,两式分别平方得:①,②,①-②得:,因为圆心到距离为,所以最小值为,又,故最小值为:.故答案为:15、【解析】利用百分位数的计算方法即可求解.【详解】将以上数据从小到大排列为,,,,,,,;%,则第25百分位数第项和第项的平均数,即为.故答案为:.16、0【解析】根据题意得,进而根据导数几何意义求解时的导函数值即可得答案.【详解】解:因为,所以求导得,所以根据导数的几何意义得该振子在时的瞬时速度为,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)直线与圆相交;(2)或【解析】(1)通过比较圆心到直线的距离与半径的关系,不难发现直线和圆相交.(2)根据垂径定理,得到圆心与直线的距离,进而列方程求解即可试题解析:(1)将圆方程化为标准方程,所以圆的圆心,半径,圆心到直线的距离,因此直线与圆相交(2)设圆心到直线的距离为,则,又,解得所求直线为或考点:直线与圆的位置关系18、(1)20人(2)(3)【解析】(1)根据频率分布直方图先求出样本中分数在[40,90)的频率,即可解出;(2)先根据频率分布直方图判断出75%分位数在[70,80)之间,即可根据分位数公式算出;(3)根据频率分布直方图知分数不小于70分的人数中男女各占30人,从而可知样本中男生有60人,女生有40人,即可求出总体中男生和女生人数的比例【小问1详解】由频率分布直方图知,分数在[50,90)频率为(0.01+0.02+0.04+0.02)×10=0.9,在样本中分数在[50,90)的人数为100×0.9=90(人),在样本中分数在[40,90)的人数为95人,所以分数在[40,90)的人数为400×0.95=380(人),总体中分数小于40的人数为20人【小问2详解】测试成绩从低到高排序,占人数75%的人分数在[70,80)之间,所以估计测评成绩的75%分位数为【小问3详解】由频率分布直方图知,分数不小于70分的人数共有60人,由已知男女各占30人,从而样本中男生有60人,女生有40人,故总体中男生与女生的比例为19、(1)(2)【解析】(1)由题意求出两直线的交点,再求出所求直线的斜率,用点斜式写出直线的方程;(2)根据题意求出圆的半径,由圆心写出圆的标准方程【小问1详解】解:由题意知,解得,直线和的交点为;设直线的斜率为,与直线垂直,;直线的方程为,化为一般形式为;【小问2详解】解:设圆的半径为,则圆心为到直线的距离为,由垂径定理得,解得,圆的标准方程为20、(1)(2)【解析】(1)利用一元二次不等式的解法求解;(2)利用分式不等式的解法求解.【小问1详解】解:因为,所以,解得,所以不等式的解集是;【小问2详解】因为,所以,所以,即,解得,所以不等式的解集是.21、(1);(2)答案见解析【解析】(1)求出曲线的斜率,切点坐标,求出函数的导数,利用导函数值域斜率的关系,即可求出,(2)求出导函数的符号,判断函数的单调性即可得到函数的极值【详解】(1)因为函数的图象在点P(0,f(0))处的切线方程是,所以切线斜率是,且,求得,即点又函数,则所以依题意得解得(2)由(1)知所以令,解得或当,或;当,所以函数的单调递增区间是,,单调递减区间是所以当变化时,和变化情况如下表:0极大值极小值所以,22、(1)单调递增区间为;单调递减区间为和(2)【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 63409-3:2025 EN-FR Photovoltaic power generating systems connection with the grid - Testing of power conversion equipment - Part 3: Basic operations
- 【正版授权】 IEC 62541-100:2025 FR OPC unified architecture - Part 100: Devices
- 2025年大学大四(医学检验技术)临床生物化学检验综合测试试题及答案
- 励志大气渐变努力拼搏工作总结模
- 蓝神奇的植物学生植物培训
- 工程月度安全培训课件
- 制砖厂岗位培训课件
- 工程建设安全培训会课件
- 成人乙肝疫苗加强接种策略
- 贵州省铜仁市碧江区2023-2024学年七年级上学期期末英语试题(含答案)
- 员工外出培训安全协议8篇
- 贵州省贵阳市普通中学2024-2025学年高一上学期期末英语试题(含答案无听力原文及音频)
- 小学一年级20以内连加连减口算练习题1080道
- 绿色施工实施策划方案
- DB41T 2202-2021 水利工程白蚁防治项目验收技术规程
- 石家庄市新华区2024-2025学年六上数学期末监测试题含解析
- 广州市2022-2023学年七年级上学期期末数学试卷【带答案】
- 年度个人工作总结护士
- 电气施工管理方案
- 2022-CSP-J入门级第一轮试题答案与解析
- 资产评估常用数据与参数手册
评论
0/150
提交评论