广东省佛山一中石门中学顺德一中国华纪中2026届高二上数学期末检测模拟试题含解析_第1页
广东省佛山一中石门中学顺德一中国华纪中2026届高二上数学期末检测模拟试题含解析_第2页
广东省佛山一中石门中学顺德一中国华纪中2026届高二上数学期末检测模拟试题含解析_第3页
广东省佛山一中石门中学顺德一中国华纪中2026届高二上数学期末检测模拟试题含解析_第4页
广东省佛山一中石门中学顺德一中国华纪中2026届高二上数学期末检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省佛山一中,石门中学,顺德一中,国华纪中2026届高二上数学期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列命题中正确的是()A.抛物线的焦点坐标为B.抛物线的准线方程为x=−1C.抛物线的图象关于x轴对称D.抛物线的图象关于y轴对称2.己知F为抛物线的焦点,过F作两条互相垂直的直线,,直线与C交于A、B两点,直线与C交于D、E两点,则的最小值为()A.24 B.22C.20 D.163.在空间直角坐标系下,点关于平面的对称点的坐标为()A. B.C. D.4.已知抛物线上一横坐标为5的点到焦点的距离为6,且该抛物线的准线与双曲线(,)的两条渐近线所围成的三角形面积为,则双曲线C的离心率为()A.3 B.4C.6 D.95.如图,在单位正方体中,以为原点,,,为坐标向量建立空间直角坐标系,则平面的法向量是()A.,1, B.,1,C.,, D.,1,6.我们知道∶用平行于圆锥母线的平面(不过顶点)截圆锥,则平面与圆锥侧面的交线是抛物线一部分,如图,在底面半径和高均为2的圆锥中,AB、CD是底面圆O的两条互相垂直的直径,E是母线PB的中点,已知过CD与E的平面与圆锥侧面的交线是以E为顶点的圆锥曲线的一部分,则该圆锥曲线的焦点到其准线的距离等于()A. B.C. D.17.设x∈R,则x<3是0<x<3的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件8.若函数在上为单调增函数,则m的取值范围()A. B.C. D.9.曲线在处的切线的倾斜角是()A. B.C. D.10.如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A,B,交其准线于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为()A.y2=9x B.y2=6xC.y2=3x D.y2=x11.已知椭圆的长轴长是短轴长的倍,左焦点、右顶点和下顶点分别为,坐标原点到直线的距离为,则的面积为()A. B.4C. D.12.已知P是椭圆上的一点,是椭圆的两个焦点且,则的面积是()A. B.2C. D.1二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若递增数列满足,则实数的取值范围为__________.14.若数列满足,,设,类比课本中推导等比数列前项和公式的方法,可求得______________15.已知向量、满足,,且,则与的夹角为___________.16.不等式是的解集为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左、右焦点分别为、,离心率,且过点(1)求椭圆C的方程;(2)已知过的直线l交椭圆C于A、B两点,试探究在平面内是否存在定点Q,使得是一个确定的常数?若存在,求出点Q的坐标;若不存在,说明理由18.(12分)已知数列的前n项和为,,,其中.(1)记,求证:是等比数列;(2)设,数列的前n项和为,求证:.19.(12分)已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为2,且(1)求抛物线的方程;(2)过点作直线交抛物线于两点,设,判断是否为定值?若是,求出该定值;若不是,说明理由.20.(12分)某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,超过的部分,每超出(不足,按计算)需要再收费5元.该公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).(1)求这60天每天包裹数量的平均值和中位数;(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.已知公司前台有工作人员3人,每人每天工资100元,以样本估计总体,试估计该公司每天的利润有多少元?(3)小明打算将四件礼物随机分成两个包裹寄出,且每个包裹重量都不超过,求他支付的快递费为45元的概率.21.(12分)在等差数列中,,前10项和(1)求列通项公式;(2)若数列是首项为1,公比为2的等比数列,求的前8项和22.(10分)已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为(1)求椭圆的方程;(2)设直线与椭圆相交于不同的两点,已知点的坐标为,若,求直线的方程

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据抛物线的性质逐项分析可得答案.【详解】抛物线的焦点坐标为,故A错误;抛物线的准线方程为,故B错误;抛物线的图象关于x轴对称,故C正确,D错误;故选:C.2、A【解析】由抛物线的性质:过焦点的弦长公式计算可得.【详解】设直线,的斜率分别为,由抛物线的性质可得,,所以,又因为,所以,所以,故选:A.3、C【解析】根据空间坐标系中点的对称关系求解【详解】点关于平面的对称点的坐标为,故选:C4、A【解析】由题意求得抛物线的准线方程为,进而得到准线与双曲线C的渐近线围成的三角形面积,求得,再结合和离心率的定义,即可求解.【详解】由题意,抛物线上一横坐标为5的点到焦点的距离为6,根据抛物线定义,可得,即,所以抛物线的准线方程为,又由双曲线C的两条渐近线方程为,则抛物线的准线与双曲线C的两条渐近线围成的三角形面积为,解得,又由,可得,所以双曲线C的离心率.故选:A.5、A【解析】设平面的法向量是,,,由可求得法向量.【详解】在单位正方体中,以为原点,,,为坐标向量建立空间直角坐标系,,0,,,1,,,1,,,1,,,0,,设平面的法向量是,,,则,取,得,1,,平面的法向量是,1,.故选:.6、C【解析】由圆锥的底面半径和高及E的位置可得,建立适当的平面直角坐标系,可得C的坐标,设抛物线的方程,将C的坐标代入求出抛物线的方程,进而可得焦点到其准线的距离【详解】设AB,CD的交点为,连接PO,由题意可得PO⊥面AB,所以PO⊥OB,由题意OB=OP=OC=2,因为E是母线PB的中点,所以,由题意建立适当的坐标系,以BP为y轴以OE为x轴,E为坐标原点,如图所示∶可得∶,设抛物线的方程为y2=mx,将C点坐标代入可得,所以,所以抛物线的方程为∶,所以焦点坐标为,准线方程为,所以焦点到其准线的距离为故选:C7、B【解析】利用充分条件、必要条件的定义可得出结论.【详解】,因此,“”是“”必要不充分条件.故选:B.8、B【解析】用函数单调性确定参数,使用参数分离法即可.【详解】,在上是增函数,即恒成立,;设,;∴时,是增函数;时,是减函数;故时,,∴;故选:B.9、D【解析】求出函数的导数,再求出并借助导数的几何意义求解作答.【详解】由求导得:,则有,因此,曲线在处的切线的斜率为,所以曲线在处切线的倾斜角是.故选:D10、C【解析】过点A,B分别作准线的垂线,交准线于点E,D,设|BF|=a,利用抛物线的定义和平行线的性质、直角三角形求解【详解】如图,过点A,B分别作准线的垂线,交准线于点E,D,设|BF|=a,则由已知得|BC|=2a,由抛物线定义得|BD|=a,故∠BCD=30°,在直角三角形ACE中,因为|AE|=|AF|=3,|AC|=3+3a,2|AE|=|AC|,所以3+3a=6,从而得a=1,|FC|=3a=3,所以p=|FG|=|FC|=,因此抛物线的方程为y2=3x,故选:C.11、C【解析】设,根据题意,可知的方程为直线,根据原点到直线的距离建立方程,求出,进而求出,的值,以及到直线的距离,再根据面积公式,即可求出结果.【详解】设,由题意可知,其中,所以的方程为,即所以原点到直线的距离为,所以,即,;所以直线的方程为,所以到直线的距离为;又,所以的面积为.故选:C.12、A【解析】设,先求出m、n,再利用面积公式即可求解.【详解】在中,设,则,解得:.因为,所以,所以的面积是.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据的单调性列不等式,由此求得的取值范围.【详解】由于是递增数列,所以.所以的取值范围是.故答案为:14、n【解析】先对两边同乘以4,再相加,化简整理即可得出结果.【详解】由①得:②所以①②得:,所以,,故答案为【点睛】本题主要考查类比推理的思想,结合错位相减法思想即可求解,属于基础题型.15、##【解析】根据向量数量积的计算公式即可计算.【详解】,,.故答案为:﹒16、【解析】由可得,结合分式不等式的解法即可求解.【详解】由可得,整理可得:,则,解可得:.所以不等式是的解集为:.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)存在,定点【解析】(1)根据已知条件求得,由此求得椭圆的方程.(2)对直线的斜率是否存在进行分类讨论,设出直线的方程并与椭圆方程联立,结合是常数列方程,从而求得定点的坐标.小问1详解】,,由题可得:.【小问2详解】当直线AB的斜率存在时,设直线AB的方程为,设,,联立方程组,整理得,可得,所以则恒成立,则,解得,,,此时,即存在定点满足条件当直线AB的斜率不存在时,直线AB的方程为x=-2,可得,,设要使得是一个常数,即,显然,也使得成立;综上所述:存在定点满足条件.18、(1)证明见解析;(2)证明见解析.【解析】(1)应用的关系,结合构造法可得,根据已知条件及等比数列的定义即可证结论.(2)由(1)得,再应用错位相减法求,即可证结论.【小问1详解】证明:对任意的,,,时,,解得,时,因为,,两式相减可得:,即有,∴,又,则,因为,,所以,对任意的,,所以,因此,是首项和公比均为3的等比数列【小问2详解】由(1)得:,则,,,两式相减得:,化简可得:,又,∴.19、(1)(2)是,0【解析】(1)根据题意,设抛物线的方程为:,则,,进而根据得,进而得答案;(2)直线的方程为,进而联立方程,结合韦达定理与向量数量积运算化简整理即可得答案.【小问1详解】解:由题意,设抛物线的方程为:,所以点的坐标为,点的坐标为,因为,所以,即,解得.所以抛物线的方程为:【小问2详解】解:设直线的方程为,则联立方程得,所以,,因为,所以.所以为定值.20、(1)公司每天包裹的平均数和中位数都为260件.(2)该公司平均每天的利润有1000元.(3).【解析】(1)对于平均数,运用平均数的公式即可;由于中位数将频率分布直方图分成面积相等的两部分,先确定中位数位于哪一组,然后建立关于中位数的方程即可求出.(2)利用每天的总收入减去工资的支出,即可得到公司每天的利润.(3)该为古典概型,根据题意分别确定总的基本事件个数,以及事件“快递费为45元”包括的基本事件个数,即可求出概率.【详解】(1)每天包裹数量的平均数为;或:由图可知每天揽50、150、250、350、450件的天数分别为6、6、30、12、6,所以每天包裹数量的平均数为设中位数为x,易知,则,解得x=260.所以公司每天包裹的平均数和中位数都为260件.(2)由(1)可知平均每天的揽件数为260,利润为(元),所以该公司平均每天的利润有1000元(3)设四件礼物分为二个包裹E、F,因为礼物A、C、D共重(千克),礼物B、C、D共重(千克),都超过5千克,故E和F的重量数分别有,,,,共5种,对应的快递费分别为45、45、50,45,50(单位:元)故所求概率为.【点睛】主要考查了频率分布直方图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论