江苏省南京市南京师范大学附属中学2026届高一数学第一学期期末经典模拟试题含解析_第1页
江苏省南京市南京师范大学附属中学2026届高一数学第一学期期末经典模拟试题含解析_第2页
江苏省南京市南京师范大学附属中学2026届高一数学第一学期期末经典模拟试题含解析_第3页
江苏省南京市南京师范大学附属中学2026届高一数学第一学期期末经典模拟试题含解析_第4页
江苏省南京市南京师范大学附属中学2026届高一数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南京市南京师范大学附属中学2026届高一数学第一学期期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,如果,,,则此三角形有()A.无解 B.一解C.两解 D.无穷多解2.定义在的函数,已知是奇函数,当时,单调递增,若且,且值()A.恒大于0 B.恒小于0C.可正可负 D.可能为03.如图,一质点在半径为1的圆O上以点为起点,按顺时针方向做匀速圆周运动,角速度为,5s时到达点,则()A.-1 B.C. D.4.已知,则、、的大小关系为()A. B.C. D.5.若sinα=,α是第二象限角,则sin(2α+)=()A. B.C. D.6.已知向量且,则x值为().A.6 B.-6C.7 D.-77.下列函数是偶函数且在区间(–∞,0)上为减函数的是()A.y=2x B.y=C.y=x D.8.(程序如下图)程序的输出结果为A.3,4 B.7,7C.7,8 D.7,119.如图所示的程序框图中,输入,则输出的结果是A.1 B.2C.3 D.410.设正实数满足,则的最大值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域是__________,值域是__________.12.一个扇形周长为8,则扇形面积最大时,圆心角的弧度数是__________.13.=________14.已知函数满足,若函数与图像的交点为,,,,,则__________15.如图,圆锥的底面圆直径AB为2,母线长SA为4,若小虫P从点A开始绕着圆锥表面爬行一圈到SA的中点C,则小虫爬行的最短距离为________16.已知一个铜质的实心圆锥的底面半径为6,高为3,现将它熔化后铸成一个铜球(不计损耗),则该铜球的半径是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知θ是第二象限角,,求:(1);(2)18.如图,三棱锥中,平面平面,,,(1)求三棱锥的体积;(2)在平面内经过点,画一条直线,使,请写出作法,并说明理由19.已知直线(1)求直线的斜率;(2)若直线m与平行,且过点,求m的方程.20.已知点是圆内一点,直线.(1)若圆的弦恰好被点平分,求弦所在直线的方程;(2)若过点作圆的两条互相垂直的弦,求四边形的面积的最大值;(3)若,是上的动点,过作圆的两条切线,切点分别为.证明:直线过定点.21.已知函数为奇函数,,其中(1)若函数h(x)的图象过点A(1,1),求实数m和n的值;(2)若m=3,试判断函数在上的单调性并证明;(3)设函数,若对每一个不小于3的实数,都恰有一个小于3的实数,使得成立,求实数m的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用余弦定理,结合一元二次方程根的判别式进行求解即可.【详解】由余弦定理可知:,该一元二次方程根的判别式,所以该一元二次方程没有实数根,故选:A2、A【解析】由是奇函数,所以图像关于点对称,当时,单调递增,所以当时单调递增,由,可得,,由可知,结合函数对称性可知选A3、C【解析】由正弦、余弦函数的定义以及诱导公式得出.【详解】设单位圆与轴正半轴的交点为,则,所以,,故.故选:C4、A【解析】借助中间量比较大小即可.【详解】解:因为,所以.故选:A5、D【解析】根据,求出的值,再将所求式子展开,转化成关于和的式子,然后代值得出结果【详解】因为且为第二象限角,根据得,,再根据二倍角公式得原式=,将,代入上式得,原式=故选D【点睛】本题考查三角函数给值求值,在已知角的取值范围时可直接用同角公式求出正余弦值,再利用和差公式以及倍角公式将目标式转化成关于和的式子,然后代值求解就能得出结果6、B【解析】利用向量垂直的坐标表示可以求解.【详解】因为,,所以,即;故选:B.【点睛】本题主要考查平面向量垂直的坐标表示,熟记公式是求解的关键,侧重考查数学运算的核心素养.7、C【解析】根据解析式判断各个选项中函数的奇偶性和单调性可得答案.【详解】y=2x不是偶函数;y=1y=x是偶函数,且函数在-y=-x2是二次函数,是偶函数,且在故选:C.8、D【解析】∵变量初始值X=3,Y=4,∴根据X=X+Y得输出的X=7.又∵Y=X+Y,∴输出的Y=11.故选D.9、B【解析】输入x=2后,该程序框图的执行过程是:输入x=2,x=2>1成立,y==2,输出y=2选B.10、C【解析】根据基本不等式可求得最值.【详解】由基本不等式可得,即,解得,当且仅当,即,时,取等号,故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】解不等式可得出原函数的定义域,利用二次函数的基本性质可得出原函数的值域.详解】对于函数,有,即,解得,且.因此,函数的定义域为,值域为.故答案为:;.12、2【解析】设扇形的半径为,则弧长为,结合面积公式计算面积取得最大值时的取值,再用圆心角公式即可得弧度数【详解】设扇形的半径为,则弧长为,,所以当时取得最大值为4,此时,圆心角为(弧度)故答案为:213、【解析】利用两角差的正切公式直接求值即可.【详解】=故答案为【点睛】本题主要考查两角差的正切公式,特殊角的三角函数值,属于基础题.14、4【解析】函数f(x)(x∈R)满足,∴f(x)的图象关于点(1,0)对称,而函数的图象也关于点(1,0)对称,∴函数与图像的交点也关于点(1,0)对称,∴,∴故答案为:4点睛:本题考查函数零点问题.函数零点问题有两种解决方法,一个是利用二分法求解,另一个是化原函数为两个函数,利用两个函数的交点来求解.本题要充分注意到两个函数的共性:关于同一点中心对称.15、2.【解析】分析:要求小虫爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果详解:由题意知底面圆的直径AB=2,故底面周长等于2π.设圆锥的侧面展开后的扇形圆心角为n°,根据底面周长等于展开后扇形的弧长得2π=,解得n=90,所以展开图中∠PSC=90°,根据勾股定理求得PC=2,所以小虫爬行的最短距离为2.故答案为2点睛:圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决三、16、3【解析】设铜球的半径为,则,得,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由,求得,结合三角函数基本关系式,即可求解;(2)由(1)知,根据三角函数的基本关系式和诱导公式,化简为齐次式,即可求解.【详解】(1)由题意,角是第二象限角,且,可得,可得,所以,所以,因为是第二象限角,可得.(2)由(1)知,又由.18、(1)见解析(2)见解析【解析】(1)取的中点,连接,因为,所以,由面面垂直的性质可得平面,求出的值,利用三角形面积公式求出底面积,从而根据棱锥的条件公式可得三棱锥的体积;(2)在平面中,过点作,交于点,在平面中,过点作,交于点,连结,则直线就是所求的直线,根据作法,利用线面垂直的判定定理与性质可证明.试题解析:(1)取的中点,连接,因为,所以,又因为平面平面,平面平面,平面,所以平面,因为,,所以,因为,所以的面积,所以三棱锥的体积(2)在平面中,过点作,交于点,在平面中,过点作,交于点,连结,则直线就是所求的直线,由作法可知,,又因为,所以平面,所以,即19、(1);(2).【解析】(1)将直线变形为斜截式即可得斜率;(2)由平行可得斜率,再由点斜式可得结果.【详解】(1)由,可得,所以斜率为;(2)由直线m与平行,且过点,可得m的方程为,整理得:.20、(1)(2)11(3)见解析【解析】(1)由题意知,易知,进而得到弦所在直线的方程;(2)设点到直线、的距离分别为,则,,利用条件二元变一元,转为二次函数最值问题;(3)设.该圆的方程为,利用C、D在圆O:上,求出CD方程,利用直线系求解即可试题解析:(1)由题意知,∴,∵,∴,因此弦所在直线方程为,即.(2)设点到直线、的距离分别为,则,,.∴,,当时取等号.所以四边形面积的最大值为11.(3)由题意可知、两点均在以为直径的圆上,设,则该圆的方程为,即:.又、在圆上,所以直线的方程为,即,由得,所以直线过定点.21、(1)(2)单调递增,证明见解析(3)【解析】(1)运用奇函数的定义可得,再由图象经过点,解方程可得;(2)在,递增.运用单调性的定义,结合因式分解和指数函数的单调性,即可得证;(3)求得当时,;当时,;分别讨论,,,运用基本不等式和函数的单调性,求得的范围【小问1详解】函数为奇函数,可得,即,则,由的图象过,可得(1),即,解得,故;【小问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论