北京市西城区鲁迅中学2026届高二上数学期末质量检测模拟试题含解析_第1页
北京市西城区鲁迅中学2026届高二上数学期末质量检测模拟试题含解析_第2页
北京市西城区鲁迅中学2026届高二上数学期末质量检测模拟试题含解析_第3页
北京市西城区鲁迅中学2026届高二上数学期末质量检测模拟试题含解析_第4页
北京市西城区鲁迅中学2026届高二上数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市西城区鲁迅中学2026届高二上数学期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过原点O作两条相互垂直的直线分别与椭圆交于A、C与B、D,则四边形ABCD面积最小值为()A B.C. D.2.已知过点的直线与圆相切,且与直线平行,则()A.2 B.1C. D.3.已知数列满足,则()A.2 B.C.1 D.4.已知关于的不等式的解集是,则的值是()A. B.5C. D.75.已知是双曲线C的两个焦点,P为C上一点,且,则C的离心率为()A. B.C. D.6.已知直线与直线平行,且直线在轴上的截距比在轴上的截距大,则直线的方程为()A. B.C. D.7.直线过双曲线:的右焦点,在第一、第四象限交双曲线两条渐近线分别于P,Q两点,若∠OPQ=90°(O为坐标原点),则OPQ内切圆的半径为()A. B.C.1 D.8.若直线与圆:相切,则()A.-2 B.-2或6C.2 D.-6或29.设A=37+·35+·33+·3,B=·36+·34+·32+1,则A-B的值为()A.128 B.129C.47 D.010.已知是抛物线的焦点,为抛物线上的动点,且的坐标为,则的最小值是A. B.C. D.11.已知数列满足:,,则()A. B.C. D.12.设函数在R上可导,则()A. B.C. D.以上都不对二、填空题:本题共4小题,每小题5分,共20分。13.已知直线l:和圆C:,过直线l上一点P作圆C的一条切线,切点为A,则的最小值为______14.已知双曲线的渐近线方程为,,分别为C的左,右焦点,若动点P在C的右支上,则的最小值是______15.若圆与圆相交,则的取值范围是__________.16.若数列的前n项和,则其通项公式________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在等差数列中,,(1)求的通项公式;(2)若,求数列的前项和18.(12分)已知椭圆:()的焦点坐标为,长轴长是短轴长的2倍(1)求椭圆的方程;(2)已知直线不过点且与椭圆交于两点,从下面①②中选取一个作为条件,证明另一个成立.①直线的斜率分别为,则;②直线过定点.19.(12分)如图,C是以为直径的圆上异于的点,平面平面分别是的中点.(1)证明:平面;(2)若直线与平面所成角的正切值为2,求锐二面角的余弦值.20.(12分)在水平桌面上放一只内壁光滑的玻璃水杯,已知水杯内壁为抛物面型(抛物面指抛物线绕其对称轴旋转所得到的面),抛物面的轴截面是如图所示的抛物线.现有一些长短不一、质地均匀的细直金属棒,其长度均不小于抛物线通径的长度(通径是过抛物线焦点,且与抛物线的对称轴垂直的直线被抛物线截得的弦),若将这些细直金属棒,随意丢入该水杯中,实验发现:当细棒重心最低时,达到静止状态,此时细棒交汇于一点.(1)请结合你学过的数学知识,猜想细棒交汇点的位置;(2)以玻璃水杯内壁轴截面的抛物线顶点为原点,建立如图所示直角坐标系.设玻璃水杯内壁轴截面的抛物线方程为,将细直金属棒视为抛物线的弦,且弦长度为,以细直金属棒的中点为其重心,请从数学角度解释上述实验现象.21.(12分)已知数列的首项,,,.(1)证明:为等比数列;(2)求数列的前项和22.(10分)已知动圆过点且动圆内切于定圆:记动圆圆心的轨迹为曲线.(1)求曲线的方程;(2)若、是曲线上两点,点满足求直线的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】直线AC、BD与坐标轴重合时求出四边形面积,与坐标轴不重合求出四边形ABCD面积最小值,再比较大小即可作答.【详解】因四边形ABCD的两条对角线互相垂直,由椭圆性质知,四边形ABCD的四个顶点为椭圆顶点时,而,四边形ABCD的面积,当直线AC斜率存在且不0时,设其方程为,由消去y得:,设,则,,直线BD方程为,同理得:,则有,当且仅当,即或时取“=”,而,所以四边形ABCD面积最小值为.故选:A2、C【解析】先根据垂直关系设切线方程,再根据圆心到切线距离等于半径列式解得结果.【详解】因为切线与直线平行,所以切线方程可设为因为切线过点P(2,2),所以因为与圆相切,所以故选:C3、D【解析】首先得到数列的周期,再计算的值.【详解】由条件,可知,两式相加可得,即,所以数列是以周期为的周期数列,.故选:D4、D【解析】由题意可得的根为,然后利用根与系数的关系列方程组可求得结果【详解】因为关于的不等式的解集是,所以方程的根为,所以,得,所以,故选:D5、A【解析】根据双曲线的定义及条件,表示出,结合余弦定理可得答案.【详解】因为,由双曲线的定义可得,所以,;因为,由余弦定理可得,整理可得,所以,即.故选:A【点睛】关键点睛:双曲线的定义是入手点,利用余弦定理建立间的等量关系是求解的关键.6、A【解析】分析可知直线不过原点,可设直线的方程为,其中且,利用斜率关系可求得实数的值,化简可得直线的方程.【详解】若直线过原点,则直线在两坐标轴上的截距相等,不合乎题意,设直线的方程为,其中且,则直线的斜率为,解得,所以,直线的方程为,即.故选:A.7、B【解析】根据渐近线的对称性,结合锐角三角函数定义、正切的二倍角公式、直角三角形内切圆半径公式进行求解即可.【详解】由双曲线标准方程可知:,双曲线的渐近线方程为:,因此,因为∠OPQ=90°,所以三角形是直角三角形,,而,解得:,由双曲线渐近线的对称性可知:,于是有,在直角三角形中,,由勾股定理可知:,设OPQ内切圆的半径为,于是有:,即,故选:B【点睛】关键点睛:利用三角形内切圆的性质是解题的关键.8、B【解析】利用圆心到直线距离等于半径得到方程,解出的值.【详解】圆心为,半径为,由题意得:,解得:或6.故选:B9、A【解析】先化简A-B,发现其结果为二项式展开式,然后计算即可【详解】A-B=37-·36+·35-·34+·33-·32+·3-1=故选A.【点睛】本题主要考查了二项式定理的运用,关键是通过化简能够发现其结果在形式上满足二项式展开式,然后计算出结果,属于基础题10、C【解析】由题意可得,抛物线的焦点,准线方程为过点作垂直于准线,为垂足,则由抛物线的定义可得,则,为锐角∴当最小时,最小,则当和抛物线相切时,最小设切点,由的导数为,则的斜率为.∴,则.∴,∴故选C点睛:本题主要考查抛物线的定义和几何性质,与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到焦点的距离与点到准线的距离的转化,这样可利用三角形相似,直角三角形中的锐角三角函数或是平行线段比例关系可求得距离弦长以及相关的最值等问题.11、A【解析】由a1=3,,利用递推思想,求出数列的前11项,推导出数列{an}从第6项起是周期为3的周期数列,由此能求出a2022【详解】解:∵数列{an}满足:a1=3,,∴a2=3a1+1=10,5,a4=3a3+1=16,a58,4,a72,a81,a9=3a8+1=4,a102,a111,∴数列{an}从第6项起是周期为3的周期数列,∵2022=5+672×3+1,∴a2022=a6=4故选:A12、B【解析】根据极限的定义计算【详解】由题意故选:B二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】求出圆C的圆心坐标、半径,再借助圆的切线性质及勾股定理列式计算作答.【详解】圆C:,圆心为,半径,点C到直线l的距离,由圆的切线性质知:,当且仅当,即点P是过点C作直线l的垂线的垂足时取“=”,所以的最小值为1故答案为:114、【解析】首先根据双曲线的渐近线方程和焦点坐标,求出双曲线的标准方程;设,根据双曲线的定义可知,从而利用基本不等式即可求出的最小值.【详解】因为双曲线的渐近线方程为,焦点坐标为,,所以,即,所以双曲线方程为.设,则,且,,当且仅当,即时等号成立,所以的最小值是.故答案为:.15、【解析】根据圆心距小于两半径之和,大于两半径之差的绝对值列出不等式解出即可.【详解】圆的圆心为原点,半径为,圆,即的圆心为,半径为,由于两圆相交,故,即,解得,即的取值范围是,故答案为:16、【解析】由和计算【详解】由题意,时,,所以故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设的公差为,由等差数列的通项公式结合条件可得答案.(2)由(1)可得,由错位相减法可得答案.【小问1详解】设的公差为,由已知得且,解得,,所以的通项公式为【小问2详解】由(1)可得,所以,所以,两式相减得:,所以,所以18、(1)(2)证明见解析【解析】(1)由条件可得,解出即可;(2)选①证②,当直线的斜率存在时,设:,,然后联立直线与椭圆的方程消元,然后韦达定理可得,,然后由可算出,即可证明,选②证①,设:,,然后联立直线与椭圆的方程消元,然后韦达定理可得,,然后可算出.【小问1详解】由条件可得,解得所以椭圆方程为【小问2详解】选①证②:当直线的斜率存在时,设:,由得,则,由得即,即所以代入所以所以解得:(舍去),所以直线过定点当直线斜率不存在时,设:所以,由得所以,即,解得所以直线(不符合题意,舍去)综上:直线过定点选②证①:由题意直线的斜率存在,设:由得则,所以.19、(1)证明见解析(2)【解析】(1)由分别是的中点,得到,在由是圆的直径,所以,结合面面垂直的性质定理,证得面,即可证得面;(2)以C为坐标原点,为x轴,为y轴,过C垂直于面直线为z轴,建立空间直角坐标系,分别求得平面与平面的一个法向量,结合向量的夹角公式,即可求解.【小问1详解】证明:在,因为分别是的中点,所以,又因为是圆的直径,所以,又由平面平面,平面平面,且平面,所以面,因为,所以面.【小问2详解】解:由(1)知面,所以直线与平面所成角为,由题意知,以C为坐标原点,为x轴,为y轴,过C垂直于面的直线为z轴,建立空间直角坐标系,如图所示,可得,则,,设面的法向量为,则,取,可得,所以,设面的法向量为,则,取,可得,所以,则,所以锐二面角的余弦值为.20、(1)抛物线的焦点或抛物面的焦点(2)答案见解析【解析】(1)结合通径的特点可猜想得到结果;(2)将问题转化为当时,只要过点,则中点到的距离最小,根据,结合抛物线定义可得结论.【小问1详解】根据通径的特征,知通径会经过抛物线的焦点达到静止状态,则可猜想细棒交汇点位置为:抛物线焦点或抛物面的焦点.【小问2详解】解释上述现象,即证:当(为抛物线通径)时,只要过点,则中点到的距离最小;如图所示,记点在抛物线准线上的射影分别是,,由抛物线定义知:,当过抛物线焦点时,点到准线距离取得最小值,最小值为的一半,此时点到轴距离最小.【点睛】关键点点睛:本题考查抛物线的实际应用问题,解题关键是能够将问题转化为抛物线焦点弦的中点到轴距离最小问题的证明,通过抛物线的定义可证得结论.21、(1)证明见解析(2)【解析】(1)利用等比数列的定义即可证明.(2)利用错位相减法即可求解.【小问1详解】当时,,所以:数列是公比为3的等比数列;【小问2详解】由(1)知,数列是以3为首项,以3为公比的等比数列,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论