广东广州市增城区2026届高二上数学期末监测模拟试题含解析_第1页
广东广州市增城区2026届高二上数学期末监测模拟试题含解析_第2页
广东广州市增城区2026届高二上数学期末监测模拟试题含解析_第3页
广东广州市增城区2026届高二上数学期末监测模拟试题含解析_第4页
广东广州市增城区2026届高二上数学期末监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东广州市增城区2026届高二上数学期末监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.2019年末,武汉出现新型冠状病毒肺炎(COVID—19)疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为p(0<p<1)且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为f(p),当p=p0时,f(p)最大,则p0=()A. B.C. D.2.执行如图的程序框图,输出的S的值为()A. B.0C.1 D.23.直线的斜率是()A. B.C. D.4.某地为应对极端天气抢险救灾,需调用A,B两种卡车,其中A型卡车x辆,B型卡车y辆,以备不时之需,若x和y满足约束条件则最多需调用卡车的数量为()A.7 B.9C.13 D.145.双曲线:的渐近线与圆:在第一、二象限分别交于点、,若点满足(其中为坐标原点),则双曲线的离心率为()A. B.C. D.6.数列满足,,,则数列的前8项和为()A.25 B.26C.27 D.287.曲线上存在两点A,B到直线到距离等于到的距离,则()A.12 B.13C.14 D.158.若函数,则单调增区间为()A. B.C. D.9.设点P是双曲线,与圆在第一象限的交点,、分别是双曲线的左、右焦点,且,则此双曲线的离心率为()A. B.C. D.310.已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹方程()A.x2-=1(x≤-1) B.x2-=1C.x2-=1(x1) D.-x2=111.设,则有()A. B.C. D.12.已知定义在R上的函数满足,且有,则的解集为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.椭圆的左、右焦点分别为,,为坐标原点,则以下说法正确的是()A.过点的直线与椭圆交于,两点,则的周长为8B.椭圆上存在点,使得C.椭圆的离心率为D.为椭圆上一点,为圆上一点,则点,的最大距离为314.设命题:,,则为______.15.若和或都是假命题,则的范围是__________16.已知四面体中,,分别在,上,且,,若,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C:的左、右焦点分别为F1,F2,离心率为,椭圆C上点M满足(1)求椭圆C的标准方程:(2)若过坐标原点的直线l交椭圆C于P,Q两点,求线段PQ长为时直线l的方程18.(12分)已知椭圆:的左、右焦点分别为,,离心率为,且过点.(1)求椭圆的标准方程;(2)若过点的直线与椭圆相交于,两点(A、B非椭圆顶点),求的最大值.19.(12分)如图,在棱长为2的正方体中,E,F分别为AB,BC上的动点,且.(1)求证:;(2)当时,求点A到平面的距离.20.(12分)已知动圆过点且动圆内切于定圆:记动圆圆心的轨迹为曲线.(1)求曲线方程;(2)若、是曲线上两点,点满足求直线的方程.21.(12分)如图,在三棱锥中,侧面PAB是边长为4的正三角形且与底面ABC垂直,点D,E,F,H分别是棱PA,AB,BC,PC的中点(1)若点G在棱BC上,且BG=3GC,求证:平面∥平面DHG;(2)若AC=2,,求二面角的余弦值22.(10分)已知函数.(1)求函数的单调区间;(2)当时,求函数的值域.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】解设事件A为:检测了5人确定为“感染高危户”,设事件B为:检测了6人确定为“感染高危户”,则,再利用基本不等式法求解.【详解】解:设事件A为:检测了5人确定为“感染高危户”,设事件B为:检测了6人确定为“感染高危户”,则,,所以,令,则,,当且仅当,即时,等号成立,即,故选:A2、A【解析】直接求出的值即可.【详解】解:由题得,程序框图就是求,由于三角函数的最小正周期为,,,所以.故选:A3、D【解析】把直线方程化为斜截式即得【详解】直线方程的斜截式为,斜率为故选:D4、B【解析】画出约束条件的可行域,利用目标函数的几何意义即可求解【详解】设调用卡车的数量为z,则,其中x和y满足约束条件,作出可行域如图所示:当目标函数经过时,纵截距最大,最大.故选:B5、B【解析】由,得点为三角形的重心,可得,即可求解.【详解】如图:设双曲线的焦距为,与轴交于点,由题可知,则,由,得点为三角形的重心,可得,即,,即,解得.故选:B【点睛】本题主要考查了双曲线的简单几何性质,三角形的重心的向量表示,属于中档题.6、C【解析】根据通项公式及求出,从而求出前8项和.【详解】当时,,当时,,当时,,当时,,当时,,当时,,则数列的前8项和为.故选:C7、D【解析】由题可知A,B为半圆C与抛物线的交点,利用韦达定理及抛物线的定义即求.【详解】由曲线,可得,即,为圆心为,半径为7半圆,又直线为抛物线的准线,点为抛物线的焦点,依题意可知A,B为半圆C与抛物线的交点,由,得,设,则,,∴.故选:D.8、C【解析】求出导函数,令解不等式即可得答案.【详解】解:因为函数,所以,令,得,所以的单调增区间为,故选:C.9、C【解析】根据几何关系得到是直角三角形,然后由双曲线的定义及勾股定理可求解.【详解】点到原点的距离为,又因为在中,,所以是直角三角形,即.由双曲线定义知,又因为,所以.在中,由勾股定理得,化简得,所以.故选:C.10、A【解析】根据双曲线定义求解【详解】,则根据双曲线定义知的轨迹为的左半支故选:A第II卷(非选择题11、A【解析】利用作差法计算与比较大小即可求解.【详解】因为,,所以,所以,故选:A.12、A【解析】构造,应用导数及已知条件判断的单调性,而题设不等式等价于即可得解.【详解】设,则,∴R上单调递增.又,则.∵等价于,即,∴,即所求不等式的解集为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、ABD【解析】结合椭圆定义判断A选项的正确性,结合向量数量积的坐标运算判断B选项的正确性,直接法求得椭圆的离心率,由此判断C选项的正确性,结合两点间距离公式判断D选项的正确性.【详解】对于选项:由椭圆定义可得:,因此的周长为,所以选项正确;对于选项:设,则,且,又,,所以,,因此,解得,,故选项正确;对于选项:因为,,所以,即,所以离心率,所以选项错误;对于选项:设,,则点到圆的圆心的距离为,因为,所以,所以选项正确,故选:ABD14、,【解析】由全称命题的否定即可得到答案【详解】根据全称命题的否定,可得为,【点睛】本题考查了含有量词的命题否定,属于基础题15、【解析】先由和或都是假命题,求出x的范围,取交集即可.【详解】若为假命题,则有或若或是假命题,则所以的范围是即的范围是胡答案:16、【解析】连接,根据题意,结合空间向量加减法运算求解即可.【详解】解:连接∵四面体中,,分别在,上,且,∴∴∴.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)依题意可得,即可求出、,即可求出椭圆方程;(2)首先求出直线斜率不存在时弦显然可得直线的斜率存在,设直线方程为、、,联立直线与椭圆方程,消元列出韦达定理,再根据弦长公式得到方程,求出,即可得解;【小问1详解】解:依题意,解得,所以椭圆方程为;【小问2详解】解:当直线的斜率不存在时,直线的方程为,此时,不符合题意;所以直线的斜率存在,设直线方程为,则,消元整理得,设,,则,,所以,即,解得,所以直线的方程为;18、(1)(2)【解析】(1)根据离心率和点在椭圆上建立方程,结合,然后解出方程即可(2)设直线的斜率为,联立直线与椭圆的方程,然后利用韦达定理表示出,两点的坐标关系,并表示出为直线斜率的函数,然后求出的最大值【小问1详解】由椭圆过点,则有:由可得:解得:则椭圆的方程为:【小问2详解】由(1)得,,已知直线不过椭圆长轴顶点则直线的斜率不为,设直线的方程为:设,,联立直线方程和椭圆方程整理可得:故是恒成立的根据韦达定理可得:,则有:由,可得:所以的最大值为:19、(1)证明见解析(2)【解析】(1)如图,以为轴,为轴,为轴建立空间直角坐标系,利用空间向量法分别求出和,再证明即可;(2)利用空间向量的数量积求出平面的法向量,结合求点到面距离的向量法即可得出结果.【小问1详解】证明:如图,以为轴,为轴,为轴,建立空间直角坐标系,则,,,,所以,,所以,故,所以;【小问2详解】当时,,,,,则,,,设是平面的法向量,则由,解得,取,得,设点A到平面的距离为,则,所以点A到平面的距离为.20、(1);(2).【解析】(1)根据两圆内切,以及圆过定点列式求轨迹方程;(2)利用重心坐标公式可知,,再设直线的方程为与椭圆方程联立,利用根与系数的关系求解直线方程.【详解】(1)由已知可得,两式相加可得则点的轨迹是以、为焦点,长轴长为的椭圆,则因此曲线的方程是(2)因为,则点是的重心,易得直线的斜率存在,设直线的方程为,联立消得:且①②由①②解得则直线的方程为即【点睛】本题考查直线与椭圆的问题关系,本题的关键是根据求得,.21、(1)证明见解析;(2).【解析】(1)由中位线的性质可得、、,再由线面平行的判定可证平面PEF、平面PEF,最后根据面面平行的判定证明结论.(2)应用勾股定理、等边三角形的性质、面面和线面垂直的性质可证、、两两垂直,构建空间直角坐标系,求面BPC、面PCA的法向量,再应用空间向量夹角的坐标表示求二面角的余弦值.【小问1详解】因为D,H分别是PA,PC的中点,所以因为E,F分别是AB,BC的中点,所以,综上,,又平面PEF,平面PEF,所以平面PEF由题意,G是CF的中点,又H是PC的中点,所以,又平面PEF,平面PEF,所以平面PEF由,HG,平面DHG,所以平面平面DHG【小问2详解】在△ABC中,AB=4,AC=2,,所以,所以,又,则因为△PAB为等边三角形,点E为AB的中点,所以,又平面平面ABC,平面平面ABC=AB,所以平面ABC,面ABC,故综上,以E为坐标原点,以EB,EF,EP所在直线分别为x,y,z轴,建立空间直角坐标系,如图所示,有,,,,则,,设平面BPC的法向量为,则,令,则设平面PCA的法向量为,则,令,则所以.由图知,二面角的平面角为锐角,所以二面角的余弦值为22、(1)单调递增区间(−∞,−1)和(4,+∞),单调递减区间(−1,4)(2)【解析】(1)求出,令,由导数的正负即可得到函数f(x)的单调递增区间和递减区间;(2)求出函数在区间中的单调性,求出极大值和极小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论