版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都市龙泉第二中学2026届高一数学第一学期期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数是奇函数且在定义域内是增函数的是()A. B.C. D.2.命题“对任意x∈R,都有x2≥1”的否定是()A.对任意x∈R,都有x2<1 B.不存在x∈R,使得x2<1C.存在x∈R,使得x2≥1 D.存在x∈R,使得x2<13.高斯是德国著名的数学家,近代数学奠基者之一,享有数学王子的美誉,他和阿基米德、牛顿并列为世界三大数学家,用其姓名命名的“高斯函数”为,其中表示不超过的最大整数,例如,已知函数,令函数,则的值域为()A.B.C.D.4.为了节约水资源,某地区对居民用水实行“阶梯水价”制度:将居民家庭全年用水量(取整数)划分为三档,水价分档递增,其标准如下:阶梯居民家庭全年用水量(立方米)水价(元/立方米)其中水费(元/立方米)水资源费(元/立方米)污水处理费(元/立方米)第一阶梯0-180(含)52.071.571.36第二阶梯181-260(含)74.07第三阶梯260以上96.07如该地区某户家庭全年用水量为300立方米,则其应缴纳的全年综合水费(包括水费、水资源费及污水处理费)合计为元.若该地区某户家庭缴纳的全年综合水费合计为1180元,则此户家庭全年用水量为()A.170立方米 B.200立方米C.220立方米 D.236立方米5.函数的零点所在的区间是A.(0,1) B.(1,2)C.(2,3) D.(3,4)6.下图记录了某景区某年月至月客流量情况:根据该折线图,下列说法正确的是()A.景区客流量逐月增加B.客流量的中位数为月份对应的游客人数C.月至月的客流量情况相对于月至月波动性更小,变化比较平稳D.月至月的客流量增长量与月至月的客流量回落量基本一致7.是定义在上的偶函数,在上单调递增,,,则下列不等式成立的是()A. B.C. D.8.下图是函数的部分图象,则()A. B.C. D.9.已知一个水平放置的平面四边形的直观图是边长为1的正方形,则原图形的周长为()A.6 B.8C. D.10.已知集合A={x|x<2},B={x≥1},则A∪B=()A. B.C. D.R二、填空题:本大题共6小题,每小题5分,共30分。11.计算的值为__________12.设扇形的周长为,面积为,则扇形的圆心角的弧度数是________13.正方体ABCD-A1B1C1D1中,二面角C1-AB-C平面角等于________14.设,则________.15.函数在上为单调递增函数,则实数的取值范围是______16.过点且在轴,轴上截距相等的直线的方程为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在国家大力发展新能源汽车产业政策下,我国新能源汽车的产销量高速增长.某地区年底新能源汽车保有量为辆,年底新能源汽车保有量为辆,年底新能源汽车保有量为辆(1)根据以上数据,试从(,且),,(,且),三种函数模型中选择一个最恰当的模型来刻画新能源汽车保有量的增长趋势(不必说明理由),设从年底起经过年后新能源汽车保有量为辆,求出新能源汽车保有量关于的函数关系式;(2)假设每年新能源汽车保有量按(1)中求得的函数模型增长,且传统能源汽车保有量每年下降的百分比相同,年底该地区传统能源汽车保有量为辆,预计到年底传统能源汽车保有量将下降.试估计到哪一年底新能源汽车保有量将超过传统能源汽车保有量.(参考数据:,)18.根据下列条件,求直线的方程(1)求与直线3x+4y+1=0平行,且过点(1,2)的直线l的方程.(2)过两直线3x-2y+1=0和x+3y+4=0的交点,且垂直于直线x+3y+4=0.19.甲、乙二人独立破译同一密码,甲破译密码的概率为0.7,乙破译密码的概率为0.6.记事件A:甲破译密码,事件B:乙破译密码.(1)求甲、乙二人都破译密码的概率;(2)求恰有一人破译密码的概率.20.设两个向量,,满足,.(1)若,求、的夹角;(2)若、夹角为,向量与夹角为钝角,求实数的取值范围.21.设两个非零向量与不共线,(1)若,,,求证:A,B,D三点共线;(2)试确定实数k,使和共线
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据指数函数、正切函数的性质,结合奇函数和单调性的性质进行逐一判断即可.【详解】A:当时,,所以该函数不是奇函数,不符合题意;B:由,设,因为,所以该函数是奇函数,,函数是上的增函数,所以函数是上的增函数,因此符合题意;C:当时,,当时,,显然不符合增函数的性质,故不符合题意;D:当时,,显然不符合增函数的性质,故不符合题意,故选:B2、D【解析】根据含有一个量词的否定是改量词、否结论直接得出.【详解】因为含有一个量词的否定是改量词、否结论,所以命题“对任意x∈R,都有x2≥1”的否定是“存在x∈R,使得x2<1”.故选:D.【点睛】本题考查含有一个量词的否定,属于基础题.3、C【解析】先进行分离,然后结合指数函数与反比例函数性质求出的值域,结合已知定义即可求解【详解】解:因为,所以,所以,则的值域故选:C4、C【解析】根据用户缴纳的金额判定全年用水量少于260,利用第二档的收费方式计算即可.【详解】若该用户全年用水量为260,则应缴纳元,所以该户家庭的全年用水量少于260,设该户家庭全年用水量为x,则应缴纳元,解得.故选:C5、B【解析】因为函数为上的增函数,故利用零点存在定理可判断零点所在的区间.【详解】因为为上的增函数,为上的增函数,故为上的增函数.又,,由零点存在定理可知在存在零点,故选B.【点睛】函数的零点问题有两种类型,(1)计算函数的零点,比如二次函数的零点等,有时我们可以根据解析式猜出函数的零点,再结合单调性得到函数的零点,比如;(2)估算函数的零点,如等,我们无法计算此类函数的零点,只能借助零点存在定理和函数的单调性估计零点所在的范围.6、C【解析】根据折线图,由中位数求法、极差的意义,结合各选项的描述判断正误即可.【详解】A:景区客流量有增有减,故错误;B:由图知:按各月份客流量排序为且是10个月份的客流量,因此数据的中位数为月份和月份对应客流量的平均数,故错误;C:由月至月的客流量相对于月至月的客流量:极差较小且各月份数据相对比较集中,故波动性更小,正确;D:由折线图知:月至月的客流量增长量与月至月的客流量回落量相比明显不同,故错误.故选:C7、C【解析】根据对数的运算法则,得到,结合偶函数的定义以及对数函数的单调性,得到自变量的大小,根据函数在上的单调性,得到函数值的大小,得到选项.【详解】,而,因为是定义在上的偶函数,且在上单调递增,所以,所以,故选:C.8、B【解析】由图象求出函数的周期,进而可得的值,然后逆用五点作图法求出的值即可求解.【详解】解:由图象可知,函数的周期,即,所以,不妨设时,由五点作图法,得,所以,所以故选:B.9、B【解析】由斜二测画法的规则,把直观图还原为原平面图形,再求原图形的周长【详解】解:由斜二测画法的规则知,与轴平行的线段其长度不变以及与横轴平行的性质不变,正方形的对角线在轴上,可求得其长度为,所以在平面图中其在轴上,且其长度变为原来2倍,是,其原来的图形如图所示;所以原图形的周长是:故选:【点睛】本题考查了平面图形的直观图应用问题,能够快速的在直观图和原图之间进行转化,是解题的关键,属于中档题10、D【解析】利用并集定义直接求解即可【详解】∵集合A={x|x<2},B={x≥1},∴A∪B=R.故选D【点睛】本题考查并集的求法,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】.12、【解析】设扇形的半径和弧长分别为,由题设可得,则扇形圆心角所对的弧度数是,应填答案13、45°【解析】解:如图,设正方体ABCD-A1B1C1D1的棱长为1,以DA为x轴,以DC为y轴,以DD1为z轴,建立空间直角坐标系,则A(1,0,0),B(1,1,0),C1(0,1,1),∴=(0,1,0),=(-1,1,1),设面ABC1的法向量为=(x,y,z),∵•=0,•=0,∴y=0,-x+y+z=0,∴=(1,0,1),∵面ABC的法向量=(0,0,1),设二面角C1-AB-C的平面角为θ,∴cosθ=|cos<,>|=,∴θ=45°,答案为45°考点:二面角的平面角点评:本题考查二面角的平面角及求法,是基础题.解题时要认真审题,注意向量法的合理运用14、2【解析】先求出,再求的值即可【详解】解:由题意得,,所以,故答案为:215、【解析】令∴即函数的增区间为,又函数在上为单调递增函数∴令得:,即,得到:,又∴实数的取值范围是故答案为16、或【解析】当直线不过原点时设截距式方程;当直线过原点时设,分别将点代入即可【详解】由题,当直线不过原点时设,则,所以,则直线方程为,即;当直线过原点时设,则,所以,则直线方程为,即,故答案为:或【点睛】本题考查求直线方程,考查截距式方程的应用,截距相同的直线问题,需注意过原点的情况三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)应选择的函数模型是(,且),函数关系式为;(2)年底.【解析】(1)根据题中的数据可得出所选的函数模型,然后将对应点的坐标代入函数解析式,求出参数的值,即可得出函数解析式;(2)设传统能源汽车保有量每年下降的百分比为,根据题意求出的值,可得出设从年底起经过年后的传统能源汽车保有量关于的函数关系式,根据题意得出关于的不等式,解之即可.【小问1详解】解:根据该地区新能源汽车保有量的增长趋势知,应选择的函数模型是(,且),由题意得,解得,所以.【小问2详解】解:设传统能源汽车保有量每年下降的百分比为,依题意得,,解得,设从年底起经过年后的传统能源汽车保有量为辆,则有,设从年底起经过年后新能源汽车的数量将超过传统能源汽车,则有化简得,所以,解得,故从年底起经过年后,即年底新能源汽车的数量将超过传统能源汽车.18、(1)3x+4y-11=0(2)3x-y+2=0【解析】(1)设与直线平行的直线为,把点代入,解得即可;(2)由,解得两直线的交点坐标为,结合所求直线垂直于直线,可得所求直线斜率,利用点斜式即可得出.【详解】(1)由题意,设l的方程为3x+4y+m=0,将点(1,2)代入l的方程3+4×2+m=0,得m=-11,∴直线l的方程为3x+4y-11=0;(2)由,解得,两直线的交点坐标为,因为直线的斜率为所求直线垂直于直线,所求直线斜率,所求直线方程为,化为.【点睛】本题主要考查直线的方程,两条直线平行、垂直与斜率的关系,属于中档题.对直线位置关系的考查是热点命题方向之一,这类问题以简单题为主,主要考查两直线垂直与两直线平行两种特殊关系:在斜率存在的前提下,(1);(2).19、(1)0.42;(2)0.46.【解析】(1)由相互独立事件概率的乘法公式运算即可得解;(2)由互斥事件概率的加法公式及相互独立事件概率的乘法公式运算即可得解.【详解】(1)事件“甲、乙二人都破译密码”可表示为AB,事件A,B相互独立,由题意可知,所以;(2)事件“恰有一人破译密码”可表示为,且,互斥所以.20、(1);(2)且.【解析】(1)根据数量积运算以及结果,结合模长,即可求得,再根据数量积求得夹角;(2)根据夹角为钝角则数量积为负数,求得的范围;再排除向量与不为反向向量对应参数的范围,则问题得解.【详解】(1)因,所以,即,又,,所以,所以,又,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年江阳城建职业学院单招综合素质考试模拟试题附答案详解
- 2026年毕节职业技术学院单招综合素质考试参考题库附答案详解
- 2026年马鞍山职业技术学院单招综合素质笔试模拟试题附答案详解
- 教育培训的安全检查内容课件
- 教育培训座谈会发言安全课件
- 教育培训和安全运营管理课件
- 2025年南昌师范学院马克思主义基本原理概论期末考试笔试真题汇编
- 2025年山西管理职业学院马克思主义基本原理概论期末考试笔试真题汇编
- 2025年西南财经大学马克思主义基本原理概论期末考试真题汇编
- 2024年铁岭卫生职业学院马克思主义基本原理概论期末考试模拟试卷
- 具有较大危险因素的生产经营场所、设备和设施的安全管理制度
- JT-T-883-2014营运车辆行驶危险预警系统技术要求和试验方法
- 适用于新高考新教材天津专版2024届高考英语一轮总复习写作专项提升Step3变魔句-提升描写逼真情境能力课件外研版
- 元宇宙技术与应用智慧树知到期末考试答案章节答案2024年中国科学技术大学
- 竹雕的雕刻工艺
- 社交媒体网络虚假信息传播的影响和治理
- 自考《影视编导》03513复习备考试题库(含答案)
- 消防设计专篇
- 新人教版高中生物必修一全册课时练(同步练习)
- 「梦回唐宋」-边塞诗(可编辑版)
- 九年级道德与法治(上)选择题易错50练
评论
0/150
提交评论