2026届甘肃省合水县一中高一数学第一学期期末调研试题含解析_第1页
2026届甘肃省合水县一中高一数学第一学期期末调研试题含解析_第2页
2026届甘肃省合水县一中高一数学第一学期期末调研试题含解析_第3页
2026届甘肃省合水县一中高一数学第一学期期末调研试题含解析_第4页
2026届甘肃省合水县一中高一数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届甘肃省合水县一中高一数学第一学期期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.图1是南北方向、水平放置的圭表(一种度量日影长的天文仪器,由“圭”和“表”两个部件组成)示意图,其中表高为h,日影长为l.图2是地球轴截面的示意图,虚线表示点A处的水平面.已知某测绘兴趣小组在冬至日正午时刻(太阳直射点的纬度为南纬)在某地利用一表高为的圭表按图1方式放置后,测得日影长为,则该地的纬度约为北纬()(参考数据:,)A. B.C. D.2.已知向量,向量,则的最大值,最小值分别是()A.,0 B.4,C.16,0 D.4,03.已知,,,是球的球面上的四个点,平面,,,则该球的半径为()A. B.C. D.4.设a=,b=,c=,则a,b,c的大小关系是()A. B.C. D.5.设是两条不同的直线,是两个不同的平面,且,则下列说法正确的是A.若,则 B.若,则C.若,则 D.若,则6.一名篮球运动员在最近6场比赛中所得分数的茎叶图如图所示,由于疏忽,茎叶图中的两个数据上出现了污点,导致这两个数字无法辨认,但统计员记得除掉污点2处的数字不影响整体中位数,且这六个数据的平均数为17,则污点1,2处的数字分别为A.5,7 B.5,6C.4,5 D.5,57.如图,在中,为边上的中线,,设,若,则的值为A. B.C. D.8.已知方程的两根分别为、,且、,则A. B.或C.或 D.9.已知全集,集合,集合,则集合为A. B.C. D.10.逻辑斯蒂函数fx=11+eA.函数fx的图象关于点0,fB.函数fx的值域为(0,1C.不等式fx>D.存在实数a,使得关于x的方程fx二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则函数f(x)的值域为______.12.化简________.13.一个底面积为1的正四棱柱的八个顶点都在同一球面上,若这个正四棱柱的高为,则该球的表面积为__________14.若正数,满足,则________.15.已知,若,则的最小值是___________.16.已知一个扇形的面积为,半径为,则它的圆心角为______弧度三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求最小正周期;(2)求的单调递减区间;(3)当时,求的最小值及取得最小值时的值18.设,其中(1)若函数的图象关于原点成中心对称图形,求的值;(2)若函数在上是严格减函数,求的取值范围19.已知函数的部分图象如图所示.(1)写出函数f(x)的最小正周期T及ω、φ的值;(2)求函数f(x)在区间上的最大值与最小值.20.已知函数(1)证明:函数在上是增函数;(2)求在上的值域21.函数在一个周期内的图象如图所示,O为坐标原点,M,N为图象上相邻的最高点与最低点,也在该图象上,且(1)求的解析式;(2)的图象向左平移1个单位后得到的图象,试求函数在上的最大值和最小值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由题意有,可得,从而可得【详解】由图1可得,又,所以,所以,所以,该地的纬度约为北纬,故选:2、D【解析】利用向量的坐标运算得到|2用θ的三角函数表示化简求最值【详解】解:向量,向量,则2(2cosθ,2sinθ+1),所以|22=(2cosθ)2+(2sinθ+1)2=8﹣4cosθ+4sinθ=8﹣8sin(),所以|22的最大值,最小值分别是:16,0;所以|2的最大值,最小值分别是4,0;故选:D【点睛】本题考查了向量的坐标运算以及三角函数解析式的化简;利用了两角差的正弦公式以及正弦函数的有界性3、D【解析】由题意,补全图形,得到一个长方体,则PD即为球O的直径,根据条件,求出PD,即可得答案.【详解】依题意,补全图形,得到一个长方体,则三棱锥P-ABC的外接球即为此长方体的外接球,如图所示:所以PD即为球O的直径,因为平面,,,所以AD=BC=3,所以,所以半径,故选:D【点睛】本题考查三棱锥外接球问题,对于有两两垂直的三条棱的三棱锥,可将其补形为长方体,即长方体的体对角线为外接球的直径,可简化计算,方便理解,属基础题.4、C【解析】根据指数和幂函数的单调性比较大小即可.【详解】因为在上单调递增,在上单调递减所以,故.故选:C5、A【解析】本道题目分别结合平面与平面平行判定与性质,平面与平面平行垂直判定与性质,即可得出答案.【详解】A选项,结合一条直线与一平面垂直,则过该直线的平面垂直于这个平面,故正确;B选项,平面垂直,则位于两平面的直线不一定垂直,故B错误;C选项,可能平行于与相交线,故错误;D选项,m与n可能异面,故错误【点睛】本道题目考查了平面与平面平行判定与性质,平面与平面平行垂直判定与性质,发挥空间想象能力,找出选项的漏洞,即可.6、A【解析】由于除掉处的数字后剩余个数据的中位数为,故污点处的数字为,,则污点处的数字为,故选A.7、C【解析】分析:求出,,利用向量平行的性质可得结果.详解:因为所以,因为,则,有,,由可知,解得.故选点睛:本题主要考查平面向量的运算,属于中档题.向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单)8、D【解析】将韦达定理的形式代入两角和差正切公式可求得,根据韦达定理可判断出两角的正切值均小于零,从而可得,进而求得,结合正切值求得结果.【详解】由韦达定理可知:,又,,本题正确选项:【点睛】本题考查根据三角函数值求角的问题,涉及到两角和差正切公式的应用,易错点是忽略了两个角所处的范围,从而造成增根出现.9、C【解析】,选C10、D【解析】A选项,代入f-x,计算fx+f-x=1和f0=12,可得对称性;B选项,由【详解】解:对于A:fx=11+e-x=ex1+ex,f-x对于B:fx=11+e-x,易知e-x>0,所以1+e对于C:由fx=11+e-x容易判断,函数fx在R上单调递增,且f对于D:因为函数fx在R上单调递增,所以方程fx故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】求函数的导数利用函数的单调性求值域即可.【详解】解:函数,,由,解得,此时函数单调递增由,解得,此时函数单调递减函数的最小值为(2),(1),(5)最大值为(5),,即函数的值域为:.故答案为.【点睛】本题主要考查函数的值域的求法,利用导数研究函数的单调性是解决本题的关键,属于基础题.12、【解析】观察到,故可以考虑直接用辅助角公式进行运算.【详解】故答案为:.13、【解析】底面为正方形,对角线长为.故圆半径为,故球的表面积为.【点睛】本题主要考查几何体的外接球问题.解决与几何体外接球有关的数学问题时,主要是要找到球心所在的位置,并计算出球的半径.寻找球心的一般方法是先找到一个面的外心,如本题中底面正方形的中心,球心就在这个外心的正上方,根据图形的对称性,易得球心就在正四棱柱中间的位置.14、108【解析】设,反解,结合指数运算和对数运算,即可求得结果.【详解】可设,则,,;所以.故答案为:108.15、16【解析】乘1后借助已知展开,然后由基本不等式可得.【详解】因为,所以当且仅当,,即时,取“=”号,所以的最小值为16.故答案为:1616、##【解析】利用扇形的面积公式列方程即可求解.【详解】设扇形的圆心角为,扇形的面积即,解得,所以扇形的圆心角为弧度,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)最小值为,【解析】(1)利用三角恒等变换化简函数解析式为,利用正弦型函数的周期公式可求得函数的最小正周期;(2)解不等式可得出函数的单调递减区间;(3)由可求得的取值范围,结合正弦型函数的基本性质可求得的最小值及其对应的值.【小问1详解】解:由,则的最小正周期为【小问2详解】解:由,,则,,则,,所以的单调递减区间为【小问3详解】解:当时,,当时,即当时,函数取最小值,且.18、(1);(2)【解析】(1)根据函数的图象关于原点成中心对称,得到是奇函数,由此求出的值,再验证,即可得出结果;(2)任取,根据函数在区间上是严格减函数,得到对任意恒成立,分离出参数,进而可求出结果.【详解】(1)因为函数的图象关于原点成中心对称图形,所以是奇函数,则,解得,此时,因此,所以是奇函数,满足题意;故;(2)任取,因为函数在上严格减函数,则对任意恒成立,即对任意恒成立,即对任意恒成立,因为,所以,则,所以对任意恒成立,又,所以,为使对任意恒成立,只需.即的取值范围是.【点睛】思路点睛:已知函数单调性求参数时,可根据单调性的定义,得到不等式,利用分离参数的方法分离出所求参数,得到参数大于(等于)或小于(等于)某个式子的性质,结合题中条件,求出对应式子的最值,即可求解参数范围.(有时会用导数的方法研究函数单调性,进而求解参数范围)19、(1),,;(2)最小值为,最大值为1.【解析】(1)由函数的部分图象求解析式,由周期求出,代入求出的值,可得函数的解析式;(2)由以上可得,,再利用正弦函数的定义域和值域,求得函数的最值.【详解】(1)根据函数的部分图象,可得,解得,,将代入可得,解得;(2)由以上可得,,,,,当时,即,函数取得最小值为.当时,即,函数取得最大值为1.【点睛】本题考查三角函数部分图象求解析式,考查三角函数给定区间的最值,属于基础题.20、(1)证明见解析(2)【解析】(1)设,化简计算并判断正负即可得出;(2)根据单调性即可求解.【小问1详解】设,,因为,所以,,则,即,所以函数在上是增函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论