版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届上海市华师大三附中高一数学第一学期期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数fx①fx的定义域是-②fx③fx在区间(0,+④fx的图像与gx=1其中正确的结论是()A.①② B.③④C.①②③ D.①②④2.用反证法证明命题:“已知.,若不能被7整除,则与都不能被7整除”时,假设的内容应为A.,都能被7整除 B.,不能被7整除C.,至少有一个能被7整除 D.,至多有一个能被7整除3.已知实数满足方程,则的最小值和最大值分别为()A.-9,1 B.-10,1C.-9,2 D.-10,24.下列函数中,是奇函数,又在定义域内为减函数是()A. B.C. D.5.在下列区间中函数的零点所在的区间为()A. B.C. D.6.已知角是的内角,则“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分又不必要条件7.函数的图象大致是A. B.C. D.8.已知直线:和直线:互相垂直,则实数的值为()A.-1 B.1C.0 D.29.历史上数学计算方面的三大发明是阿拉伯数、十进制和对数,其中对数的发明,大大缩短了计算时间,为人类研究科学和了解自然起了重大作用,对数运算对估算“天文数字”具有独特优势.已知,,则的估算值为()A. B.C. D.10.在半径为2的圆上,一扇形的弧所对的圆心角为,则该扇形的面积为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数对于任意,都有成立,则___________12.已知向量的夹角为,,则__________.13.已知函数的部分图象如图所示,则___________14.函数,的图象恒过定点P,则P点的坐标是_____.15.命题“”的否定是_________.16._________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,且函数是奇函数.(1)求实数a的值;(2)判断函数的单调性,并证明.18.(1)利用函数单调性定义证明:函数是减函数;(2)已知当时,函数的图象恒在轴的上方,求实数的取值范围.19.已知函数,(1)若,解不等式;(2)若函数恰有三个零点,,,求的取值范围20.已知有半径为1,圆心角为a(其中a为给定的锐角)的扇形铁皮OMN,现利用这块铁皮并根据下列方案之一,裁剪出一个矩形.方案1:如图1,裁剪出的矩形ABCD的顶点A,B在线段ON上,点C在弧MN上,点D在线段OM上;方案2:如图2,裁剪出的矩形PQRS的顶点P,S分别在线段OM,ON上,顶点Q,R在弧MN上,并且满足PQ∥RS∥OE,其中点E为弧MN的中点.(1)按照方案1裁剪,设∠NOC=,用表示矩形ABCD的面积S1,并证明S1的最大值为;(2)按照方案2裁剪,求矩形PQRS的面积S2的最大值,并与(1)中的结果比较后指出按哪种方案可以裁剪出面积最大的矩形.21.已知函数,.(1)求的最小正周期和单调区间;(2)求在闭区间上的最大值和最小值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】可根据已知的函数解析式,通过求解函数的定义域、奇偶性、单调性和与gx=【详解】函数fx=x②选项,因为fx=x选项③,在区间0,+∞时,fx=xx2+1=1x+1x,而函数选项④,可通过画出fx的图像与gx=1故选:D.2、C【解析】根据用反证法证明数学命题的步骤和方法,应先假设命题的否定成立而命题“与都不能被7整除”的否定为“至少有一个能被7整除”,故选C【点睛】本题主要考查用反证法证明数学命题,把要证结论进行否定,得到要证的结论的反面,是解题的关键.3、A【解析】即为y-2x可看作是直线y=2x+b在y轴上的截距,当直线y=2x+b与圆相切时,纵截距b取得最大值或最小值,此时,解得b=-9或1.所以y-2x的最大值为1,最小值为-9故选A.4、C【解析】是非奇非偶函数,在定义域内为减函数;是奇函数,在定义域内不单调;y=-x3是奇函数,又在定义域内为减函数;非奇非偶函数,在定义域内为减函数;故选C5、A【解析】根据解析式判断函数单调性,再结合零点存在定理,即可判断零点所处区间.【详解】因为是单调增函数,故是单调增函数,至多一个零点,又,故的零点所在的区间为.故选:A.6、C【解析】在中,由求出角A,再利用充分条件、必要条件的定义直接判断作答.【详解】因角是的内角,则,当时,或,即不一定能推出,若,则,所以“”是“”的必要不充分条件.故选:C7、A【解析】利用函数的奇偶性排除选项B、C项,然后利用特殊值判断,即可得到答案【详解】由题意,函数满足,所以函数为偶函数,排除B、C,又因为时,,此时,所以排除D,故选A【点睛】本题主要考查了函数的图象的识别问题,其中解答中熟练应用函数的奇偶性进行排除,以及利用特殊值进行合理判断是解答的关键,着重考查了分析问题解决问题的能力,属于基础题.8、B【解析】利用两直线垂直的充要条件即得.【详解】∵直线:和直线:互相垂直,∴,即.故选:B.9、C【解析】令,化为指数式即可得出.【详解】令,则,∴,即的估算值为.故选:C.10、D【解析】利用扇形的面积公式即可求面积.【详解】由题设,,则扇形的面积为.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】由可得时,函数取最小值,由此可求.【详解】,其中,.因为,所以,,解得,,则故答案为:.12、【解析】由已知得,所以,所以答案:点睛:向量数量积的求法及注意事项:(1)计算数量积的三种方法:定义、坐标运算、数量积的几何意义,要灵活选用,和图形有关的不要忽略数量积几何意义的应用(2)求向量模的常用方法:利用公式,将模的运算转化为向量的数量积的运算,解题时要注意向量数量积运算率的灵活应用(3)利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧13、【解析】由图象可得最小正周期的值,进而可得,又函数图象过点,利用即可求解.【详解】解:由图可知,因为,所以,解得,因为函数的图象过点,所以,又,所以,故答案为:.14、【解析】令,解得,且恒成立,所以函数的图象恒过定点;故填.15、,【解析】根据全称命题的否定形式,直接求解.【详解】全称命题“”的否定是“,”.故答案为:,16、【解析】根据诱导公式可求该值.【详解】.故答案为:.【点睛】诱导公式有五组,其主要功能是将任意角的三角函数转化为锐角或直角的三角函数.记忆诱导公式的口诀是“奇变偶不变,符号看象限”.本题属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)在上是减函数,证明见解析【解析】(1)直接由解出,再把代入检验;(2)直接由定义判断单调性即可.【小问1详解】因为,函数奇函数,所以,解得.此时,,,满足题意.故.【小问2详解】在上是减函数.任取,,则,由∴,故在上是减函数.18、(1)略;(2)【解析】(1)根据单调性的定义进行证明即可得到结论;(2)将问题转化为在上恒成立求解,即在上恒成立,然后利用换元法求出函数的最小值即可得到所求范围【详解】(1)证明:设,则,∵,∴,∴,∴,∴函数是减函数(2)由题意可得在上恒成立,∴在上恒成立令,因为,所以,∴在上恒成立令,,则由(1)可得上单调递减,∴,∴∴实数的取值范围为【点睛】(1)用定义证明函数单调性的步骤为:取值、作差、变形、定号、结论,其中变形是解题的关键(2)解决恒成立问题时,分离参数法是常用的方法,通过分离参数,转化为求具体函数的最值的问题处理19、(1)(2)【解析】(1)分当时,当时,讨论去掉绝对值,由一元二次不等式的求解方法可得答案;(2)得出分段函数的解析式,根据二次函数的性质和根与系数的关系可求得答案.【小问1详解】解:当时,原不等式可化为…①(ⅰ)当时,①式化为,解得,所以;(ⅱ)当时,①式化为,解得,所以综上,原不等式的解集为【小问2详解】解:依题意,因为,且二次函数开口向上,所以当时,函数有且仅有一个零点所以时,函数恰有两个零点所以解得不妨设,所以,是方程的两相异实根,则,所以因为是方程的根,且,由求根公式得因为函数在上单调递增,所以,所以.所以.所以a的取值范围是20、(1),证明见解析;(2),方案1可以裁剪出面积最大的矩形.【解析】(1)分别用含有的三角函数表示,写出矩形的面积,利用三角函数求最值;(2)利用(1)的结论,根据对称性知,矩形的最大面积为,然后利用作差法比较大小即可【小问1详解】在图1中,,,,,,,当时,矩形最大面积为,得证.【小问2详解】在图(2)中,设与边,分别交于点,,由(1)的结论,可得矩形的最大面积为,根据对称性知,矩形的最大面积为.因为为锐角,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼师饮食安全知识培训课件
- 血透个案研究:老年患者护理特点
- 中学学生家长委员会制度
- 2025年村主任助理年终述职报告范本
- 20XX年智能制造项目年终总结报告
- 2026年水文地质学基础测试题库【满分必刷】
- 2026年政府采购培训试题100道含答案【新】
- 2026年石家庄工商职业学院单招(计算机)测试模拟题库附答案
- 提高康复护理良肢位摆放效率的方法
- 2026年网络预约出租汽车驾驶员从业资格考试题库附完整答案(易错题)
- 纺织服装电线电缆施工合同
- DB11∕T 493.3-2022 道路交通管理设施设置规范 第3部分:道路交通信号灯
- 第17课 辛亥革命与中华民国的建立(课件)-【中职专用】《中国历史》魅力课堂教学三件套(高教版2023•基础模块)
- 期末考试-公共财政概论-章节习题
- 广东省广州市番禺区祈福英语实验学校2020-2021学年八年级上学期期中数学试题
- 蜡疗操作评分标准
- 2023广东高职高考英语真题卷附答案解析
- 心理学导论学习通超星课后章节答案期末考试题库2023年
- 牛津版小学英语教材梳理
- 侦查学的重点
- GB/T 1355-2021小麦粉
评论
0/150
提交评论