版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省常州市田家炳高级中学2026届高二数学第一学期期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某高中学校高二和高三年级共有学生人,为了解该校学生的视力情况,现采用分层抽样的方法从三个年级中抽取一个容量为的样本,其中高一年级抽取人,则高一年级学生人数为()A. B.C. D.2.在棱长为2的正方体中,是棱上一动点,点是面的中心,则的值为()A.4 B.C.2 D.不确定3.为了了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为50的样本,则分段的间隔为()A.20 B.25C.40 D.504.命题“对任何实数,都有”的否定形式是()A.,使得B.,使得C.,使得D.,使得5.已知平面上两点,则下列向量是直线的方向向量是()A. B.C. D.6.等比数列的公比为,则“”是“对于任意正整数n,都有”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件7.已知、分别是双曲线的左、右焦点,为一条渐近线上的一点,且,则的面积为()A. B.C. D.18.在平面直角坐标系xOy中,点(0,4)关于直线x-y+1=0的对称点为()A.(-1,2) B.(2,-1)C.(1,3) D.(3,1)9.已知等差数列中,、是的两根,则()A B.C. D.10.数列满足,对任意,都有,则()A. B.C. D.11.直线在轴上的截距为()A.3 B.C. D.12.直线的倾斜角的大小为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知圆被轴截得的弦长为4,被轴分成两部分的弧长之比为1∶2,则圆心的轨迹方程为______,若点,,则周长的最小值为______14.已知双曲线的左、右焦点分别为、,直线与的左、右支分别交于点、(、均在轴上方).若直线、的斜率均为,且四边形的面积为,则__________.15.设等差数列,前项和分别为,,若对任意自然数都有,则的值为______.16.对某市“四城同创”活动中100名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为的数据不慎丢失,则依据此图可估计该市“四城同创”活动中志愿者年龄在的人数为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)椭圆:()的离心率为,递增直线过椭圆的左焦点,且与椭圆交于两点,若,求直线的斜率.18.(12分)已知椭圆()与椭圆的焦点相同,且椭圆C过点(1)求椭圆C的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点A,B,且,(O为坐标原点),若存在,求出该圆的方程;若不存在,说明理由;(3)P是椭圆C上异于上顶点,下顶点的任一点,直线,,分别交x轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值19.(12分)已知各项均为正数的等差数列中,,且,,构成等比数列的前三项(1)求数列,的通项公式;(2)求数列的前项和20.(12分)2021年11月初某市出现新冠病毒感染者,该市教育局部署了“停课不停学”的行动,老师们立即开展了线上教学.某中学为了解教学效果,于11月30日复课第一天安排了测试,数学教师为了调查高二年级学生这次测试的数学成绩与每天在线学习数学的时长之间的相关关系,对在校高二学生随机抽取45名进行调查,了解到其中有25人每天在线学习数学的时长不超过1小时,并得到如下的统计图:(1)根据统计图填写下面列联表,是否有95%的把握认为“高二学生的这次摸底考试数学成绩与其每天在线学习数学的时长有关”;数学成绩不超过120分数学成绩超过120分总计每天在线学习数学的时长不超过1小时25每天在线学习数学的时长超过1小时总计45(2)从被抽查的,且这次数学成绩超过120分的学生中,按分层抽样的方法抽取5名,再从这5名同学中随机抽取2名,求这两名同学中至多有一名每天在线学习数学的时长超过1小时的概率附:,其中.参考数据:0.1000.0500.0100.0012.7063.8416.63510.82821.(12分)已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数)(1)求的值;(2)是否存在常数,使得对于定义域内的任意,恒成立?若存在,求出的值;若不存在,请说明理由22.(10分)已知抛物线的焦点到准线的距离为4,直线与抛物线交于两点.(1)求此抛物线的方程;(2)若以为直径的圆过原点O,求实数k的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先得到从高二和高三年级抽取人,再利用分层抽样进行求解.【详解】设高一年级学生人数为,因为从三个年级中抽取一个容量为的样本,且高一年级抽取人,所以从高二和高三年级抽取人,则,解得,即高一年级学生人数为.故选:B2、A【解析】画出图形,建立空间直角坐标系,用向量法求解即可【详解】如图,以为原点建立如图所示的空间直角坐标系,因为正方体棱长为2,点是面的中心,是棱上一动点,所以,,,故选:A3、A【解析】根据系统抽样定义可求得结果【详解】分段的间隔为故选:A4、B【解析】可将原命题变成全称命题形式,而全称命题的否定为特称命题,即可选出答案.【详解】命题“对任何实数,都有”,可写成:,使得,此命题为全称命题,故其否定形式为:,使得.故选:B.5、D【解析】由空间向量的坐标运算和空间向量平行的坐标表示,以及直线的方向向量的定义可得选项.【详解】解:因为两点,则,又因为与向量平行,所以直线的方向向量是,故选:D.6、D【解析】结合等比数列的单调性,根据充分必要条件的定义判断【详解】若,,则,,充分性不成立;反过来,若,,则时,必要性不成立;因此“”是“对于任意正整数n,都有”的既不充分也不必要条件.故选:D7、A【解析】先表示出渐近线方程,设出点坐标,利用,解出点坐标,再按照面积公式求解即可.【详解】由题意知,双曲线渐近线方程为,不妨设在上,设,由得,解得,的面积为.故选:A.8、D【解析】设出点(0,4)关于直线的对称点的坐标,根据题意列出方程组,解方程组即可【详解】解:设点(0,4)关于直线x-y+1=0的对称点是(a,b),则,解得:,故选:D9、B【解析】利用韦达定理结合等差中项的性质可求得的值,再结合等差中项的性质可求得结果.【详解】对于方程,,由韦达定理可得,故,则,所以,.故选:B.10、C【解析】首先根据题设条件可得,然后利用累加法可得,所以,最后利用裂项相消法求和即可.【详解】由,得,则,所以,.故选:C.【点睛】本题考查累加法求数列通项,考查利用错位相减法求数列的前n项和,考查逻辑思维能力和计算能力,属于常考题.11、A【解析】把直线方程由一般式化成斜截式,即可得到直线在轴上的截距.【详解】由,可得,则直线在轴上的截距为3.故选:A12、A【解析】考点:直线的倾斜角专题:计算题分析:因为直线的斜率是倾斜角的正切值,所以欲求直线的倾斜角,只需求出直线的斜率即可,把直线化为斜截式,可得斜率,问题得解解答:解:∵x-y+1=0可化为y=x+,∴斜率k=设倾斜角为θ,则tanθ=k=,θ∈[0,π)∴θ=故选A点评:本题主要考查了直线的倾斜角与斜率之间的关系,属于直线方程的基础题型,需要学生对基础知识熟练掌握二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】设,圆半径为,进而根据题意得,,进而得其轨迹方程为双曲线,再根据双曲线的定义,将周长转化为求的最小值,进而求解.【详解】解:如图1,因为圆被轴截得的弦长为4,被轴分成两部分的弧长之比为1∶2,所以,,所以中点,则,,所以,故设,圆半径为,则,,,所以,即所以圆心的轨迹方程为,表示双曲线,焦点为,,如图2,连接,由双曲线的定义得,即,所以周长为,因为,所以周长的最小值为故答案为:;.14、【解析】设点关于原点的对称点为点,连接,分析可知四边形为平行四边形,可得出,设,可得出直线的方程为,设点、,将直线的方程与双曲线的方程联立,列出韦达定理,求出的取值范围,利用三角形的面积公式可求得的值,即可求得的值.【详解】解:设点关于原点的对称点为点,连接,如下图所示:在双曲线中,,,则,即点、,因为原点为、的中点,则四边形为平行四边形,所以,且,因为,故、、三点共线,所以,,故,由题意可知,,设,则直线的方程为,设点、,联立,可得,所以,,可得,由韦达定理可得,,可得,,整理可得,即,解得或(舍),所以,,解得.故答案为:.15、【解析】由等差数列的性质可得:.再利用已知即可得出【详解】由等差数列的性质可得:对于任意的都有,则故答案为:【点睛】本题考查了等差数列的性质,求和公式,考查了推理能力与计算能力,属于中档题16、【解析】首先根据频率分布直方图计算出年龄在的频率,从而可计算出年龄在的人数.【详解】年龄在的频率为,所以年龄在的人数为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、1【解析】根据离心率写出,设出直线为,把直线的方程与椭圆进行联立消,写出韦达定理,再利用,即可解出,进而求出直线的斜率.【详解】,.设递增直线的方程为,把直线的方程与椭圆进行联立:.①,②.③.把③代入①中得④.把④代入②中得...18、(1);(2)存在,;(3)证明见解析,定值2【解析】(1)根据已知条件,用待定系数解方程组即可得到C的方程;(2)设出AB的方程,与椭圆方程联立,得到根与系数关系,代入由确定方程内即可得到结果;(3)设P点坐标,求出M和N坐标,设出圆G的圆心坐标,求得圆的半径,由垂径定理求得切线长|OT|,结合P在椭圆上可证|OT|为定值﹒【小问1详解】设椭圆C的方程为将点代入椭圆方程有点解得,(舍)∴椭圆的方程为;【小问2详解】设,当AB斜率存在时,设,代入,整理得,由得,即,由韦达定理化简得,即,设存在圆与直线相切,则,解得,∴圆的方程为;又若AB斜率不存在时,检验知满足条件,故存在圆心在原点的圆符合题意;【小问3详解】如图:,,设,直线,令,得;直线,令,得;解法一:设圆G的圆心为,则,,,而,∴,∴,∴,即线段OT长度为定值2解法二:,而,∴,∴由切割线定理得.∴,即线段OT的长度为定值219、(1);(2)【解析】(1)设等差数列公差为d,利用基本量代换列方程组求出的通项公式,进而求出的首项和公比,即可求出的通项公式;(2)利用分组求和法直接求和.【小问1详解】设等差数列的公差为d,则由已知得:,即,又,解得或(舍去),所以.,又,,,;【小问2详解】,.20、(1)表格见解析,有(2)【解析】(1)根据统计图计算填表即可;(2)根据古典概型计算公式计算即可.【小问1详解】根据统计图可得:每天在线学习数学的时长不超过1小时数学成绩不超过120分的有人,每天在线学习数学的时长不超过1小时数学成绩超过120分的有人,每天在线学习数学的时长超过1小时数学成绩不超过120分的有人,每天在线学习数学的时长超过1小时数学成绩超过120分的有人,可得列联表如下:数学成绩不超过120分数学成绩超过120分总计每天在线学习数学的时长不超过1小时151025每天在线学习数学的时长超过1小时51520总计202545根据列联表中的数据,所以有95%的把握认为“高二学生的这次摸底考试数学成绩与其每天在线学习数学的时长有关”【小问2详解】由列联表可得,被抽查学生中这次数学成绩超过120分的有25人,其中每天在线学习数学的时长不超过1小时的有10人,每天在线学习数学的时长超过1小时的有15人,人数比为2∶3,按分层抽样每天在线学习数学的时长不超过1小时的抽2人,记为:1,2;每天在线学习数学的时长超过1小时的抽3人,记为:a,b,c.所有可能结果如下:,共计10种.设事件A为“两名同学中至多有一名每天在线学习数学时长超过一小时”包含这7种可能结果所以21、(1)2;(2)存在,.【解析】(1)对函数求导,利用得的值;(2)讨论和分离参数,构造新函数求解最值即可求解【详解】解:(1),又由题意有(2)由(1)知,此时,由或,所以函数的单调减区间为和要恒成立,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年南昌航空大学马克思主义基本原理概论期末考试参考题库
- 2025年湖北省(134所)马克思主义基本原理概论期末考试参考题库
- 2025年湖南有色金属职业技术学院马克思主义基本原理概论期末考试笔试真题汇编
- 2025年山东文化艺术职业学院马克思主义基本原理概论期末考试笔试真题汇编
- 2024年鲁东大学马克思主义基本原理概论期末考试笔试题库
- 2025年南宁师范大学马克思主义基本原理概论期末考试真题汇编
- 2025年香港科技大学(广州)马克思主义基本原理概论期末考试笔试真题汇编
- 2025年阿克苏职业技术学院马克思主义基本原理概论期末考试真题汇编
- 建湖县行道树应用存在的不足
- 康养中心安全培训内容课件
- 云南师大附中2026届高三高考适应性月考卷(六)历史试卷(含答案及解析)
- 2026年内蒙古化工职业学院单招职业适应性测试参考题库及答案解析
- 奶茶店合伙协议书
- 2332《高等数学基础》国家开放大学期末考试题库
- 中国热带农业科学院橡胶研究所高层次人才引进考试题库附答案
- 2025年度机动车辆检验检测机构管理体系内审资料
- 2025中原农业保险股份有限公司招聘67人笔试历年常考点试题专练附带答案详解
- 政协课件教学
- 2025年安徽省普通高中学业水平合格性考试英语试卷(含答案)
- 合法效收账协议书
- DB32∕T 5167-2025 超低能耗建筑技术规程
评论
0/150
提交评论