2026届内蒙古五原县第一中学数学高二上期末调研模拟试题含解析_第1页
2026届内蒙古五原县第一中学数学高二上期末调研模拟试题含解析_第2页
2026届内蒙古五原县第一中学数学高二上期末调研模拟试题含解析_第3页
2026届内蒙古五原县第一中学数学高二上期末调研模拟试题含解析_第4页
2026届内蒙古五原县第一中学数学高二上期末调研模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届内蒙古五原县第一中学数学高二上期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在区间内随机取一个数x,则使得的概率为()A. B.C. D.2.如图,是函数的部分图象,且关于直线对称,则()A. B.C. D.3.以下四个命题中,正确的是()A.若,则三点共线B.C.为直角三角形的充要条件是D.若为空间的一个基底,则构成空间的另一个基底4.已知是函数的导函数,则()A0 B.2C.4 D.65.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为A. B.C.2 D.6.已知空间向量,,若,则实数的值是()A. B.0C.1 D.27.若,都是实数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件8.下列说法中正确的是()A.棱柱的侧面可以是三角形B.棱台的所有侧棱延长后交于一点C.所有几何体的表面都能展开成平面图形D.正棱锥的各条棱长都相等9.如图,在四棱锥中,平面,,,则点到直线的距离为()A. B.C. D.210.设,则的一个必要不充分条件为()A. B.C. D.11.阅读如图所示程序框图,运行相应的程序,输出S的结果是()A.128 B.64C.16 D.3212.在等差数列中,其前项和为.若,是方程的两个根,那么的值为()A.44 B.C.66 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆,A,B是椭圆C上的两个不同的点,设,若,则直线AB的方程为______14.等差数列中,若,,则______,数列的前n项和为,则______15.记为等差数列的前n项和.若,则_________.16.已知双曲线M的中心在原点,以坐标轴为对称轴.从以下三个条件中任选两个条件,并根据所选条件求双曲线M的标准方程.①一个焦点坐标为;②经过点;③离心率为.你选择的两个条件是___________,得到的双曲线M的标准方程是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知椭圆:经过点,离心率(1)求椭圆的标准方程;(2)设是经过右焦点的任一弦(不经过点),直线与直线:相交于点,记,,的斜率分别为,,,求证:,,成等差数列18.(12分)已知函数图像在点处的切线方程为.(1)求实数、的值;(2)求函数在上的最值.19.(12分)已知数列的前项的和为,且.(1)求数列的通项公式;(2)设,求数列的前项和.20.(12分)在平面直角坐标系中,已知直线:(t为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为(1)求曲线C的直角坐标方程;(2)设点M的直角坐标为,直线l与曲线C的交点为A,B,求的值21.(12分)两人下棋,每局均无和棋且获胜的概率为,某一天这两个人要进行一场五局三胜的比赛,胜者赢得2700元奖金,(1)分别求以获胜、以获胜的概率;(2)若前两局双方战成,后因为其他要事而终止比赛,间,怎么分奖金才公平?22.(10分)如图,四棱锥的底面是正方形,平面平面,E为的中点(1)若,证明:;(2)求直线与平面所成角的余弦值的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】解一元一次不等式求不等式在上解集,再利用几何概型的长度模型求概率即可.【详解】由,可得,其中长度为1,而区间长度为4,所以,所求概率为故选:A.2、C【解析】先根据条件确定为函数的极大值点,得到的值,再根据图像的单调性和导数几何意义得到和的正负即可判断.【详解】根据题意得,为函数部分函数的极大值点,所以,又因为函数在单调递增,由图像可知处切线斜率为锐角,根据导数的几何意义,所以,又因为函数在单调递增,由图像可知处切线斜率为钝角,根据导数的几何意义所以.即.故选:C.3、D【解析】利用向量共线的推论可判断A,利用数量积的定义可判断B,利用充要条件的概念可判断C,利用基底的概念可判断D.【详解】对于A,若,,所以三点不共线,故A错误;对于B,因为,故B错误;对于C,由可推出为直角三角形,由为直角三角形,推不出,所以为直角三角形的充分不必要条件是,故C错误;对于D,若为空间的一个基底,则不共面,若不能构成空间的一个基底,设,整理可得,即共面,与不共面矛盾,所以能构成空间的另一个基底,故D正确.故选:D.4、D【解析】由导数运算法则求出导函数,再计算导数值【详解】由题意,,所以故选:D5、A【解析】准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率【详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心,又点在圆上,,即,故选A【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来6、C【解析】根据空间向量垂直的性质进行求解即可.【详解】因为,所以,因此有.故选:C7、A【解析】根据充分条件和必要条件的定义判断即可得正确选项.【详解】若,则,可得,所以,可得,故充分性成立,取,,满足,但,无意义得不出,故必要性不成立,所以是的充分不必要条件,故选:A.8、B【解析】根据棱柱、棱台、球、正棱锥结构特征依次判断选项即可.【详解】棱柱的侧面都是平行四边形,A不正确;棱台是由对应的棱锥截得的,B正确;不是所有几何体的表面都能展开成平面图形,例如球不能展开成平面图形,C不正确;正棱锥的各条棱长并不是都相等,应该为正棱锥的侧棱长都相等,所以D不正确.故选:B.9、A【解析】如图,以为坐标原点,建立空间直角坐标系,然后利用空间向量求解即可【详解】因为平面,平面,平面,所以,,因为所以如图,以为坐标原点,建立空间直角坐标系,则,,,,,即.在上的投影向量的长度为,故点到直线的距离为.故选:A10、C【解析】利用必要条件和充分条件的定义判断.【详解】A选项:,,,所以是的充分不必要条件,A错误;B选项:,,所以是的非充分非必要条件,B错误;C选项:,,,所以是必要不充分条件,C正确;D选项:,,,所以是的非充分非必要条件,D错误.故选:C.11、C【解析】根据程序框图的循环逻辑写出执行步骤,即可确定输出结果.【详解】根据流程图的执行逻辑,其执行步骤如下:1、成立,则;2、成立,则;3、成立,则;4、成立,则;5、不成立,输出;故选:C12、D【解析】由,是方程的两个根,利用韦达定理可知与的和,根据等差数列的性质可得与的和等于,即可求出的值,然后再利用等差数列的性质可知等于的11倍,把的值代入即可求出的值.【详解】因为,是方程的两个根,所以,而,所以,则,故选:.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知可得为的中点,再由点差法求所在直线的斜率,即可求得直线的方程【详解】由,可得为的中点,且在椭圆内,设,,,,则,,,则,即所在直线的斜率为直线的方程为,即故答案为:14、①.②.【解析】设等差数列公差为d,根据等差数列的性质即可求通项公式;,采用裂项相消的方法求.【详解】设等差数列公差为d,,,;∵,∴.故答案为:;.15、5【解析】根据等差数列前项和的公式及等差数列的性质即可得出答案.【详解】解:,所以.故答案为:5.16、①.①②或①③或②③②.或或【解析】选①②,根据焦点坐标及顶点坐标直接求解,选①③,根据焦点坐标及离心率求出即可得解,选②③,可由顶点坐标及离心率得出,即可求解.【详解】选①②,由题意则,,,双曲线的标准方程为,故答案为:①②;,选①③,由题意,,,,双曲线的标准方程为,选②③,由题意知,,,双曲线的标准方程为.故答案为:①②;或①③;或②③;.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析【解析】(1)由点在椭圆上得到,再由,得到,联立方程组,求得的值,即可得到椭圆的标准方程;(2)由(1)得椭圆右焦点坐标,设直线的方程为,联立方程组,求得,及,结合斜率公式得到,结合,求得,即可得到,,成等差数列【详解】(1)由题意,点在椭圆上得,可得①又由,所以②由①②联立且,可得,,,故椭圆的标准方程为(2)由(1)知,椭圆的方程为,可得椭圆右焦点坐标,显然直线斜率存在,设的斜率为,则直线的方程为,联立方程组,整理得,设,,则有,,由直线的方程为,令,可得,即,从而,,,又因为共线,则有,即有,所以,将,代入得,又由,所以,即,,成等差数列【点睛】直线与圆锥曲线的综合问题的求解策略:对于直线与圆锥曲线的位置关系的综合应用问题,通常联立直线方程与圆锥曲线方程,应用一元二次方程根与系数的关系,以及弦长公式等进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力18、(1)a=3,b=-9.(2)最小值=-24,最大值=8.【解析】由曲线在的值以及切线斜率容易确定a与b的值;根据导数很容易确定函数单调区间以及极值点.【小问1详解】,,,由于切线方程是,当x=1时,y=-8,即,即=-8……①;又切线的斜率为-12,∴……②;联立①②得.【小问2详解】由(1)得:,;当时,,导函数图像如下:在时,单调递增,时,单调递减,时单调递增;∴在x=-1有极大值,x=3有极小值;在区间内:在x=-1有最大值;在x=3有最小值.19、(1);(2).【解析】(1)根据,并结合等比数列的定义即可求得答案;(2)结合(1),并通过错位相减法即可求得答案.【小问1详解】当时,,当时,,是以2为首项,2为公比的等比数列,.【小问2详解】,…①…②①-②得,.20、(1)(2)【解析】【小问1详解】由,得.两边同乘,即.由,得曲线的直角坐标方程为【小问2详解】将代入,得,设A,B对应的参数分别为则所以.由参数的几何意义得21、(1)以获胜、以获胜的概率分别是;(2)分给分别元,元.【解析】(1)以获胜、以获胜,则分别要连胜三局,前三局胜两局输一局,第四局胜利;(2)求出若两局之后正常结束比赛时,的胜率,按照胜率分奖金.【小问1详解】设以获胜、以获胜的事件分别为,依题意要想获胜,必须从第一局开始连胜局,;要想获胜,则前局只能胜局,且第局胜利,故概率;【小问2详解】设前两局双方战成后胜,胜的事件分别为.若胜,则可能连胜局,或者局只胜场,第局胜,故概率;由于两人比赛没有和局,获胜的概率为,则获胜的概率为,若胜,则可能连胜局,或者局只胜场,第局胜,故概率.故奖金应分给元,分给元.22、(1)证明见解析;(2).【解析】(1)取的中点F,连接.先证明,,即证平面,原题即得证;(2)分别取的中点G,H,连接,证明为直线与平面所成的角,设正方形的边长为1,,在中,,即得解.【小问1详解】解:取的中点F,连接因为,则为正三角形,所以因为平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论