山西省阳泉市第十一中学2026届高二上数学期末监测试题含解析_第1页
山西省阳泉市第十一中学2026届高二上数学期末监测试题含解析_第2页
山西省阳泉市第十一中学2026届高二上数学期末监测试题含解析_第3页
山西省阳泉市第十一中学2026届高二上数学期末监测试题含解析_第4页
山西省阳泉市第十一中学2026届高二上数学期末监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省阳泉市第十一中学2026届高二上数学期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则点到平面的距离为()A. B.C. D.2.现有4本不同的书全部分给甲、乙、丙3人,每人至少一本,则不同的分法有()A.12种 B.24种C.36种 D.48种3.直线在y轴上的截距为()A. B.C. D.4.函数的导函数为,对任意,都有成立,若,则满足不等式的的取值范围是()A. B.C D.5.若抛物线的准线方程是,则抛物线的标准方程是()A. B.C. D.6.若空间中n个不同的点两两距离都相等,则正整数n的取值A.至多等于3 B.至多等于4C.等于5 D.大于57.如图,O是坐标原点,P是双曲线右支上的一点,F是E的右焦点,延长PO,PF分别交E于Q,R两点,已知QF⊥FR,且,则E的离心率为()A. B.C. D.8.已知直线的倾斜角为,在轴上的截距为,则此直线的方程为()A. B.C. D.9.在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做“等和数列”,这个数叫做数列的公和.已知等和数列{an}中,,公和为5,则()A.2 B.﹣2C.3 D.﹣310.已知向量,,且与互相垂直,则()A. B.C. D.11.在条件下,目标函数的最大值为2,则的最小值是()A.20 B.40C.60 D.8012.已知一个圆锥的体积为,任取该圆锥的两条母线a,b,若a,b所成角的最大值为,则该圆锥的侧面积为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设,则_________14.已知数列中,.若为等差数列,则______.15.知函数,若函数有两个不同的零点,则实数的取值范围为_____________.16.设函数(1)求的最小正周期和的最大值;(2)已知锐角的内角A,B,C对应的边分别为a,b,c,若,且,求的面积.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知双曲线,抛物线的焦点与双曲线的一个焦点相同,点为抛物线上一点.(1)求双曲线的焦点坐标;(2)若点到抛物线的焦点的距离是5,求的值.18.(12分)设:实数满足,:实数满足(1)若,且为真,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围19.(12分)如图,在三棱柱中,平面ABC,,,,点D,E分别在棱和棱上,且,,M为棱中点(1)求证:;(2)求直线AB与平面所成角的正弦值20.(12分)已知椭圆的中心在原点,焦点在轴上,离心率等于,它的一个顶点恰好是抛物线的焦点.(1)求椭圆的标准方程;(2)已知直线与椭圆交于、两点,、是椭圆上位于直线两侧的动点,且直线的斜率为,求四边形面积的最大值.21.(12分)已知等差数列{an}的前n项和为Sn,数列{bn}满足:点(n,bn)在曲线y=上,a1=b4,___,数列{}的前n项和为Tn从①S4=20,②S3=2a3,③3a3﹣a5=b2这三个条件中任选一个,补充到上面问题的横线上并作答(1)求数列{an},{bn}的通项公式;(2)是否存在正整数k,使得Tk>,且bk>?若存在,求出满足题意的k值;若不存在,请说明理由22.(10分)如图,四棱锥P-ABCD的底面ABCD是菱形,PA⊥AB,PA⊥AD,且E、F分别是AC、PB的中点(1)证明:EF∥平面PCD;(2)求证:平面PBD⊥平面PAC

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据给定条件求出平面的法向量,再利用空间向量求出点到平面的距离.【详解】依题意,,设平面的法向量,则,令,得,则点到平面的距离为,所以点到平面的距离为.故选:A2、C【解析】先把4本书按2,1,1分为3组,再全排列求解.【详解】先把4本书按2,1,1分为3组,再全排列,则有种分法,故选:C3、D【解析】将代入直线方程求y值即可.【详解】令,则,得.所以直线在y轴上的截距为.故选:D4、C【解析】构造函数,利用导数分析函数的单调性,将所求不等式变形为,结合函数的单调性即可得解.【详解】对任意,都有成立,即令,则,所以函数在上单调递增不等式即,即因为,所以所以,,解得,所以不等式的解集为故选:C.5、D【解析】根据抛物线的准线方程,可直接得出抛物线的焦点,进而利用待定系数法求得抛物线的标准方程【详解】准线方程为,则说明抛物线的焦点在轴的正半轴则其标准方程可设为:则准线方程为:解得:则抛物线的标准方程为:故选:D6、B【解析】先考虑平面上的情况:只有三个点的情况成立;再考虑空间里,只有四个点的情况成立,注意运用外接球和三角形三边的关系,即可判断解:考虑平面上,3个点两两距离相等,构成等边三角形,成立;4个点两两距离相等,由三角形的两边之和大于第三边,则不成立;n大于4,也不成立;空间中,4个点两两距离相等,构成一个正四面体,成立;若n>4,由于任三点不共线,当n=5时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,由三角形的两边之和大于三边,故不成立;同理n>5,不成立故选B点评:本题考查空间几何体的特征,主要考查空间两点的距离相等的情况,注意结合外接球和三角形的两边与第三边的关系,属于中档题和易错题7、B【解析】令双曲线E的左焦点为,连线即得,设,借助双曲线定义及直角用a表示出|PF|,,再借助即可得解.【详解】如图,令双曲线E的左焦点为,连接,由对称性可知,点线段中点,则四边形是平行四边形,而QF⊥FR,于是有是矩形,设,则,,,在中,,解得或m=0(舍去),从而有,中,,整理得,,所以双曲线E的离心率为故选:B8、D【解析】求出直线的斜率,利用斜截式可得出直线的方程.【详解】直线的斜率为,由题意可知,所求直线的方程为.故选:D.9、C【解析】利用已知即可求得,再利用已知可得:,问题得解【详解】解:根据题意,等和数列{an}中,,公和为5,则,即可得,又由an﹣1+an=5,则,则3;故选C【点睛】本题主要考查了新概念知识,考查理解能力及转化能力,还考查了数列的周期性,属于中档题10、D【解析】根据垂直关系可得,由向量坐标运算可构造方程求得结果.【详解】,,又与互相垂直,,解得:.故选:D.11、C【解析】首先画出可行域,找到最优解,得到关系式作为条件,再去求的最小值.【详解】画出的可行域,如下图:由得由得;由得;目标函数取最大值时必过N点,则则(当且仅当时等号成立)故选:C12、B【解析】设圆锥的母线长为R,底面半径长为r,由题可知圆锥的轴截面是等边三角形,根据体积公式计算可得,利用扇形的面积公式计算即可求得结果.【详解】如图,设圆锥的母线长为R,底面半径长为r,由题可知圆锥的轴截面是等边三角形,所以,圆锥的体积,解得,所以该圆锥的侧面积为.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出函数的导数,再令,即可得出答案.【详解】解:由,得,所以.故答案为:.14、【解析】利用等差中项求解即可【详解】由为等差数列,则,解得故答案为:15、【解析】根据分段函数的性质,结合幂函数、一次函数的单调性判断零点的分布,进而求m的范围.【详解】由解析式知:在上为增函数且,在上,时为单调函数,时无零点,故要使有两个不同的零点,即两侧各有一个零点,所以在上必递减且,则,可得.故答案为:16、(1)的最小正周期为,的最大值为1(2)【解析】(1)直接根据的表达式和正弦函数的性质可得到的最小正周期和最大值;(2)先根据求得角的大小为,然后在中利用余弦定理求得,最后根据三角形的面积公式即可【小问1详解】已知则的最小正周期为:则的最大值为:【小问2详解】由可得:()或()又为锐角,则可得:.在中,由余弦定理可得:,即又,解得:则的面积为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据双曲线的方程求出即得双曲线的焦点坐标;(2)先求出的值,再解方程得解.【详解】(1)因为双曲线的方程为,所以.所以.所以.所以双曲线的焦点坐标分别为.(2)因为抛物线的焦点与双曲线的一个焦点相同,所以抛物线的焦点坐标是(2,0),所以.因为点为抛物线上一点,所以点到抛物线的焦点的距离等于点到抛物线的准线的距离.因为点到拋物线的焦点的距离是5,即,所以.【点睛】本题主要考查双曲线的焦点坐标的求法,考查抛物线的定义和几何性质,意在考查学生对这些知识的理解掌握水平.18、(1)(2)【解析】(1)根据二次不等式与分式不等式的求解方法求得命题p,q为真时实数x的取值范围,再求交集即可;(2)先求得,再根据是的必要不充分条件可得,再根据集合包含关系,根据区间端点列不等式求解即可【小问1详解】当时,,解得,即p为真时,实数x的取值范围为.由,解得,即q为真时,实数x的取值范围为若为真,则,解得实数x的取值范围为【小问2详解】若p是q的必要不充分条件,则且设,,则,又由,得,因为,则,有,解得因此a的取值范围为19、(1)证明见解析;(2).【解析】(1)由线面垂直、等腰三角形的性质易得、,再根据线面垂直的判定及性质证明结论;(2)构建空间直角坐标系,确定相关点坐标,进而求的方向向量、面的法向量,应用空间向量夹角的坐标表示求直线与平面所成角的正弦值.【小问1详解】在三棱柱中,平面,则平面,由平面,则,,则,又为的中点,则,又,则平面,由平面,因此,.【小问2详解】以为原点,以,,为轴、轴、轴的正方向建立空间直角坐标系,如图所示,可得:,,,,,,.∴,,,,设为面的法向量,则,令得,设与平面所成角为,则,∴直线与平面所成角的正弦值为.20、(1)(2)【解析】(1)根据离心率的定义以及椭圆与抛物线焦点的关系,可以求出椭圆方程;(2)根据题意,可以利用铅锤底水平高的方法求四边形APBQ的面积,即是要利用韦达定理算出.【小问1详解】由题意,即;抛物线,焦点为,故,所以椭圆C的标准方程为:.【小问2详解】由题意作图如下:设AB直线的方程为:,并设点,,联立方程:得:,∴……①,……②,;由于A,B两点在直线PQ的两边(如上图),所以,即,将①②带入得:,解得;即由题意直线PQ的方程为,联立方程解得,,∴;将线段PQ看做铅锤底,A,B两点的横坐标之差看做水平高,得四边形APBQ的面积为:,当且仅当m=0时取最大值,而,所以的最大值为.21、(1)条件选择见解析;an=2n,bn=25﹣n.(2)不存在,理由见解析.【解析】(1)把点(n,bn)代入曲线y=可得到bn=25﹣n,进而求出a1,设等差数列{an}的公差为d,选①S4=20,利用等差数列的前n项和公式可求出d,从而得到an;若选②S3=2a3,利用等差数列的前n项和公式可求出d,从而得到an;若选③3a3﹣a5=b2,利用等差数列的通项公式公式可求出d,从而得到an;(2)由(1)可知Sn==n(1+n),=,再利用裂项相消法求出Tn=1﹣,不等式无解,即不存在正整数k,使得Tk>,且bk>【小问1详解】解:∵点(n,bn)在曲线y=上,∴=25﹣n,∴a1=b4=25﹣4=2,设等差数列{an}的公差为d,若选①S4=20,则S4==20,解得d=2,∴an=2+2(n﹣1)=2n;若选②S3=2a3,则S3=a1+a2+a3=2a3,∴a1+a2=a3,∴2+2+d=2+2d,解得d=2,∴an=2+2(n﹣1)=2n;若选③3a3﹣a5=b2,则3(a1+2d)﹣(a1+4d)=25﹣2=8,∴2a1+2d=8,即2×2+2d=8,∴d=2,∴an=2+2(n﹣1)=2n;【小问2详解】解:由(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论