山西省祁县二中2026届数学高一上期末综合测试模拟试题含解析_第1页
山西省祁县二中2026届数学高一上期末综合测试模拟试题含解析_第2页
山西省祁县二中2026届数学高一上期末综合测试模拟试题含解析_第3页
山西省祁县二中2026届数学高一上期末综合测试模拟试题含解析_第4页
山西省祁县二中2026届数学高一上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省祁县二中2026届数学高一上期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合,若,则a的取值范围是()A. B.C. D.2.若直线与互相平行,则()A.4 B.C. D.3.已知函数的部分图象如图所示,下列说法错误的是()A.B.f(x)的图象关于直线对称C.f(x)在[-,-]上单调递减D.该图象向右平移个单位可得的图象4.设实数t满足,则有()A. B.C. D.5.已知,,则()A. B.C.或 D.6.直线与圆相切,则的值为()A. B.C. D.7.某几何体的三视图如图所示,则该几何体的体积是A. B.8C.20 D.248.现对有如下观测数据345671615131417记本次测试中,两组数据的平均成绩分别为,两班学生成绩的方差分别为,,则()A., B.,C., D.,9.已知函数是定义在实数集上的不恒为零的偶函数,且对任意实数都有,则的值为A. B.C. D.10.若,则A. B.C.1 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的值为___________.12.漏斗作为中国传统器具而存在于日常生活之中,某漏斗有盖的三视图如图所示,其中俯视图为正方形,则该漏斗的容积为不考虑漏斗的厚度______,若该漏斗存在外接球,则______.13.___________,__________14.在平面直角坐标系xOy中,角α与角β均以x轴的非负半轴为始边,它们的终边关于坐标原点对称.若sinα=115.已知定义在上的偶函数在上递减,且,则不等式的解集为__________16.已知两点,,以线段为直径的圆经过原点,则该圆的标准方程为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某企业为努力实现“碳中和”目标,计划从明年开始,通过替换清洁能源减少碳排放量,每年减少的碳排放量占上一年的碳排放量的比例均为,并预计年后碳排放量恰好减少为今年碳排放量的一半.(1)求的值;(2)若某一年的碳排放量为今年碳排放量的,按照计划至少再过多少年,碳排放量不超过今年碳排放量的?18.已知函数,记.(1)求函数的定义域;(2)判断函数的奇偶性,并说明理由;(3)是否存在实数,使得的定义域为时,值域为?若存在,求出实数的取值范围;若不存在,则说明理由.19.已知函数,,且在上的最小值为0.(1)求的最小正周期及单调递增区间;(2)求的最大值以及取得最大值时x的取值集合.20.已知函数求:的最小正周期;的单调增区间;在上的值域21.已知函数,.(1)用函数单调性的定义证明:是增函数;(2)若,则当为何值时,取得最小值?并求出其最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据,由集合A,B有公共元素求解.【详解】集合,因为,所以集合A,B有公共元素,所以故选:D2、B【解析】根据直线平行,即可求解.【详解】因为直线与互相平行,所以,得当时,两直线重合,不符合题意;当时,符合题意故选:B.3、C【解析】先根据图像求出即可判断A,利用正弦函数的对称轴及单调性即可判断BC,通过平移变换即可判断D.【详解】根据函数的部分图象,可得所以,故A正确;利用五点法作图,可得,可得,所以,令x,求得,为最小值,故函数的图象关于直线对称,故B正确:当时,,函数f(x)没有单调性,故C错误;把f(x)的图象向右平移个单位可得的图象,故D正确故选:C.4、B【解析】由,得到求解.【详解】解:因为,所以,所以,,则,故选:B5、A【解析】利用两边平方求出,再根据函数值的符号得到,由可求得结果.【详解】,,,,,,所以,,.故选:A..6、D【解析】由圆心到直线的距离等于半径可得【详解】由题意圆标准方程为,圆心坐标为,半径为1,所以,解得故选:D7、C【解析】由三视图可知,该几何体为长方体上方放了一个直三棱柱,其体积为:.故选C点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图8、C【解析】利用平均数以及方差的计算公式即可求解.【详解】,,,,故,故选:C【点睛】本题考查了平均数与方差,需熟记公式,属于基础题.9、A【解析】方法一:当且时,由,得,令,则是周期为的函数,所以,当时,由得,,又是偶函数,所以,所以,所以,所以.选A方法二:当时,由得,,即,同理,所以又当时,由,得,因为是偶函数,所以,所以.选A点睛:解决抽象函数问题的两个注意点:(1)对于抽象函数的求函数值的问题,可选择定义域内的恰当的值求解,即要善于用取特殊值的方法求解函数值(2)由于抽象函数的解析式未知,故在解题时要合理运用条件中所给出的性质解题,有时在解题需要作出相应的变形10、A【解析】由,得或,所以,故选A【考点】同角三角函数间的基本关系,倍角公式【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】根据给定条件结合二倍角的正切公式计算作答.【详解】因,则,所以的值为.故答案为:12、①.②.0.5【解析】先将三视图还原几何体,然后利用长方体和锥体的体积公式求解容积即可;设该漏斗外接球的半径为,设球心为,利用,列式求解的值即可.【详解】由题中的三视图可得,原几何体如图所示,其中,,正四棱锥的高为,,,所以该漏斗的容积为;正视图为该几何体的轴截面,设该漏斗外接球的半径为,设球心为,则,因为,又,所以,整理可得,解得,所以该漏斗存在外接球,则故答案为:①;②.13、①.##-0.5②.2【解析】根据诱导公式计算即可求出;根据对数运算性质可得【详解】由题意知,;故答案为:14、-14【解析】根据题意,利用同角三角函数的基本关系,再由诱导公式,可得答案.【详解】∵角α与角β的终边关于坐标原点对称,所以β=α+由诱导公式可得:sinβ=-故答案为:-15、【解析】因为,而为偶函数,故,故原不等式等价于,也就是,所以即,填点睛:对于偶函数,有.解题时注意利用这个性质把未知区间的性质问题转化为已知区间上的性质问题去处理16、【解析】由以线段为直径的圆经过原点,则可得,求得参数的值,然后由中点坐标公式求所求圆的圆心,用两点距离公式求所求圆的直径,再运算即可.【详解】解:由题意有,,又以线段为直径的圆经过原点,则,则,解得,即,则的中点坐标为,即为,又,即该圆的标准方程为,故答案为.【点睛】本题考查了圆的性质及以两定点为直径的圆的方程的求法,重点考查了运算能力,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)年.【解析】(1)设今年碳排放量为,则由题意得,从而可求出的值;(2)设再过年碳排放量不超过今年碳排放量的,则,再把代入解关于的不等式即可得答案【详解】解:设今年碳排放量为.(1)由题意得,所以,得.(2)设再过年碳排放量不超过今年碳排放量,则,将代入得,即,得.故至少再过年,碳排放量不超过今年碳排放量的.18、(1);(2)奇函数,理由见解析;(3)不存在,理由见解析.【解析】(1)分别求f(x)和g(x)定义域,F(x)为这两个定义域的交集;(2)先判断定义域是否关于原点对称,再判断F(-x)与F(x)的关系;(3)先根据定义域和值域求出m,n,a的范围,再利用单调性将问题转化为方程有解问题.【小问1详解】由题意知要使有意义,则有,得所以函数的定义域为:【小问2详解】由(1)知函数F(x)的定义域为:,关于原点对称,函数为上的奇函数.【小问3详解】,假设存在这样的实数,则由可知令,则在上递减,在上递减,是方程,即有两个在上的实数解问题转化为:关于的方程在上有两个不同的实数解令,则有,解得,又,∴故这样的实数不存在.19、(1)最小正周期为,(2)3,【解析】(1)直接利用周期公式可求出周期,由可求出增区间,(2)由得,从而可求出最小值,则可求出的值,进而可求出函数解析式,则可求出最大值以及取得最大值时x的取值集合【小问1详解】的最小正周期为.令,,解得,.所以的单调递增区间为.【小问2详解】当时,.,解得.所以.当,,即,时,取得最大值,且最大值为3.故的最大值为3,取得最大值时x的取值集合为20、(1);(2),;(3).【解析】利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性,得出结论;利用正弦函数的单调性,求得的单调增区间;利用正弦函数的定义域和值域,求得在上的值域【详解】函数,故函数的最小正周期为.令,求得,可得函数的增区间为,在上,,,,即的值域为【点睛】本题主要考查三角恒等变换,正弦函数的周期性,单调性,定义域和值域,属于中档题.单调性:根据y=sint和t=的单调性来研究,由得单调增区间;由得单调减区间.21、证明详见解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论