版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届上海市长宁区、嘉定区高一上数学期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知全集,集合,,它们的关系如图(Venn图)所示,则阴影部分表示的集合为()A. B.C. D.2.16、17世纪,随着社会各领域的科学知识迅速发展,庞大的数学计算需求对数学运算提出了更高要求,改进计算方法,提高计算速度和准确度成了当务之急.苏格兰数学家纳皮尔发明了对数,是简化大数运算的有效工具,恩格斯曾把纳皮尔的对数称为十七世纪的三大数学发明之一.已知,,设,则所在的区间为(是自然对数的底数)()A. B.C. D.3.函数y=ax+1﹣1(a>0,a≠1)恒过的定点是()A.(1,﹣1) B.(0,0)C.(0,﹣1) D.(﹣1,0)4.在①;②;③;④上述四个关系中,错误的个数是()A.1个 B.2个C.3个 D.4个5.浙江省在先行探索高质量发展建设共同富裕示范区,统计数据表明,2021年前三季度全省生产总值同比增长10.6%,两年平均增长6.4%,倘若以8%的年平均增长率来计算,经过多少年可实现全省生产总值翻一番(,)()A.7年 B.8年C.9年 D.10年6.下列四条直线,倾斜角最大的是A. B.C. D.7.已知函数,若,,互不相等,且,则的取值范围是()A. B.C. D.8.在中,,.若边上一点满足,则()A. B.C. D.9.下列函数中哪个是幂函数()A. B.C. D.10.若,且,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.写出一个在区间上单调递增幂函数:______12.直线关于定点对称的直线方程是_________13.已知直线与圆相切,则的值为________14.函数在一个周期内的图象如图所示,此函数的解析式为_______________15.=________16.函数定义域为___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,且,(1)求,的值;(2),求的值18.已知函数f(x)=(1)若f(2)=a,求a的值;(2)当a=2时,若对任意互不相等实数x1,x2∈(m,m+4),都有>0成立,求实数m的取值范围;(3)判断函数g(x)=f(x)-x-2a(<a<0)在R上的零点的个数,并说明理由19.刘先生购买了一部手机,欲使用某通讯网络最近推出的全年免流量费用的套餐,经调查收费标准如下表:套餐月租本地话费长途话费套餐甲12元0.3元/分钟0.6元/分钟套餐乙无0.5元/分钟0.8元/分钟刘先生每月接打本地电话时间是长途电话的5倍(手机双向收费,接打话费相同)(1)设刘先生每月通话时间为x分钟,求使用套餐甲所需话费的函数及使用套餐乙所需话费的函数;20.已知集合,集合.(1)若,求和(2)若,求实数的取值范围.21.已知函数且.(1)试判断函数的奇偶性;(2)当时,求函数的值域;(3)若对任意,恒成立,求实数的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据所给关系图(Venn图),可知是求,由此可求得答案.【详解】根据题意可知,阴影部分表示的是,故,故选:C.2、A【解析】根据指数与对数运算法则直接计算.【详解】,所以故选:A.3、D【解析】由,可得当时,可求得函数y=ax+1﹣1(a>0,a≠1)所过定点.【详解】因为,所以当时有,,即当时,,则当时,,所以当时,恒有函数值.所以函数y=ax+1﹣1(a>0,a≠1)恒过的定点.故选:D【点睛】本题考查指数函数的图像性质,函数图像过定点,还可以由图像间的平移关系得到答案,属于基础题.4、B【解析】根据元素与集合的关系,集合与集合的关系以及表示符号,及规定空集是任何非空集合的真子集,即可找出错误的个数【详解】解:“”表示集合与集合间的关系,所以①错误;集合中元素是数,不是集合元素,所以②错误;根据子集的定义,{0,1,2}是自身的子集,空集是任何非空集合的真子集,所以③④正确;所表示的关系中,错误的个数是2故选:B5、D【解析】由题意,可得,,两边取常用对数,根据参数数据即可求解.【详解】解:设经过年可实现全省生产总值翻一番,全省生产总值原来为,由题意可得,即,两边取常用对数可得,所以,因为,所以,所以经过10年可实现全省生产总值翻一番.故选:D.6、C【解析】直线方程y=x+1的斜率为1,倾斜角为45∘,直线方程y=2x+1的斜率为2,倾斜角为α(60∘<α<90∘),直线方程y=−x+1的斜率为−1,倾斜角为135∘,直线方程x=1的斜率不存在,倾斜角为90∘.所以C中直线的倾斜角最大.本题选择C选项.点睛:直线的倾斜角与斜率的关系斜率k是一个实数,当倾斜角α≠90°时,k=tanα.直线都有斜倾角,但并不是每条直线都存在斜率,倾斜角为90°的直线无斜率.7、A【解析】画出图像,利用正弦函数的对称性求出,再结合的范围即可求解.【详解】不妨设,画出的图像,即与有3个交点,由图像可知,关于对称,即,令,解得,所以,故,.故选:A.8、A【解析】根据向量的线性运算法则,结合题意,即可求解.【详解】由中,,且边上一点满足,如图所示,根据向量的线性运算法则,可得:.故选:A.9、A【解析】直接利用幂函数的定义判断即可【详解】解:幂函数是,,显然,是幂函数.,,都不满足幂函数的定义,所以A正确故选:A【点睛】本题考查了幂函数的概念,属基础题.10、D【解析】根据给定条件,将指数式化成对数式,再借助换底公式及对数运算法则计算即得.【详解】因为,于是得,,又因为,则有,即,因此,,而,解得,所以.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、x(答案不唯一)【解析】由幂函数的性质求解即可【详解】因为幂函数在区间上单调递增,所以幂函数可以是,故答案为:(答案不唯一)12、【解析】先求出原直线上一个点关于定点的对称点,然后用对称后的直线与原直线平行【详解】在直线上取点,点关于的对称点为过与原直线平行的直线方程为,即为对称后的直线故答案为:13、2【解析】直线与圆相切,圆心到直线的距离等于半径,列出方程即可求解的值【详解】依题意得,直线与圆相切所以,即,解得:,又,故答案为:214、【解析】根据所给的图象,可得到,周期的值,进而得到,根据函数的图象过点可求出的值,得到三角函数的解析式【详解】由图象可知,,,,三角函数的解析式是函数的图象过,,把点的坐标代入三角函数的解析式,,又,,三角函数的解析式是.故答案为:.15、【解析】利用两角差的正切公式直接求值即可.【详解】=故答案为【点睛】本题主要考查两角差的正切公式,特殊角的三角函数值,属于基础题.16、[0,1)【解析】要使函数有意义,需满足,函数定义域为[0,1)考点:函数定义域三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)首先可通过二倍角公式以及将转化为,然后带入即可计算出的值,再然后通过以及即可计算出的值;(2)可将转化为然后利用两角差的正弦公式即可得出结果【详解】⑴,因为,,所以;⑵因为,,,所以,【点睛】本题考查三角函数的相关性质,主要考查三角恒等变换,考查的公式有、、,在使用计算的时候一定要注意角的取值范围18、(1);(2);(3)个零点,理由见解析.【解析】(1)分类讨论求出f(2),代入f(2)=a,解方程可得;(2)a=2时,求出分段函数的增区间;“对任意互不相等的实数x1,x2∈(m,m+4),都有0成立”⇔f(x)在(m,m+4)上是增函数,根据子集关系列式可得m的范围;(3)按照x≥a和x<a这2种情况分别讨论零点个数【详解】解:(1)因为f(2)=a,当a≤2时,4-2(a+1)+a=a,解得a=1符合;当a<2时,-4+2(a+1)-a=a,此式无解;综上可得:a=1(2)当a=2时,f(x)=,∴f(x)的单调增区间为(-∞,)和(2,+∞),又由已知可得f(x)在(m,m+4)上单调递增,所以m+4≤,或m≥2,解得m≤-或m≥2,∴实数m的取值范围是(-∞,-]∪[2,+∞);(3)由题意得g(x)=①当x≥a时,对称轴为x=,因为-,所以f(a)=a2-a2-2a-a=-3a>0,∵-a=>a,∴f()=-=-<0,由二次函数可知,g(x)在区间(a,)和区间(,+∞)各有一个零点;②当x<a时,对称轴为x=>a,函数g(x)在区间(-∞,a)上单调递增且f()=0,所以函数在区间(-∞,a)内有一个零点综上函数g(x)=f(x)-x-2a(-<a<0)在R上有3个零点【点睛】本题考查了分段函数单调性的应用及函数零点问题,考查了分类讨论思想的运用,属于难题19、(1),;(2)答案见解析.【解析】(1)由题可知他每月接打本地电话时间为,接打长途,结合条件即得;(2)利用作差法,然后分类讨论即得.【小问1详解】因为刘先生每月接打本地电话时间是长途电话的5倍,所以他每月接打本地电话时间为,接打长途若选择套餐甲,则月租12元,本地话费,长途话费,则;若选择套餐乙,则月租0元,本地话费,长途话费,则【小问2详解】∵,当时,即时,,此时应选择套餐乙省钱;当时,即时,,此时应选择套餐甲省钱;当时,即时,,此时甲乙两种套餐话费一样20、(1),;(2).【解析】⑴把代入求出,,即可得到和⑵由得到,由此能求出实数的取值范围;解析:(1)若,则.,(2)因为,若,则,若,则或,综上,21、(1)偶函数;(2);(3).【解析】(1)先求得函数的定义域为R,再由,可判断函数是奇偶性;(2)由,所以,以及对数函数的单调性可得函数的值域;(3)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医保基金自查自纠整改报告3篇
- 幼教中心安全消防培训课件
- 幼师消防安全培训课件
- 外科护理学技能课件
- 2025年护士年终述职报告
- 物流包车合同模板(3篇)
- 外贸-合同模板(3篇)
- 2026年宝鸡中北职业学院单招职业倾向性考试题库附答案
- 广东省公务员考试招聘试题及答案
- 2026年品牌营销策划品牌营销爆款复制方法论调研
- 药房与线上医疗服务平台协议书
- 河道水质提升治理施工方案
- 汽车配件供货协议书(2篇)
- 骨折并发症早期和晚期
- 2024版强弱电安装合同范本
- 【案例】智慧旅游信息化建设方案
- 《数据库设计》课件
- 牵引供电计算专题(面向交流)
- 新员工入职背景调查表 (职员)
- 云计算环境下中小企业会计信息化建设问题
- 《材料性能学》课件-第四章 材料的断裂韧性
评论
0/150
提交评论