广东省深圳市育才中学2026届数学高一上期末调研模拟试题含解析_第1页
广东省深圳市育才中学2026届数学高一上期末调研模拟试题含解析_第2页
广东省深圳市育才中学2026届数学高一上期末调研模拟试题含解析_第3页
广东省深圳市育才中学2026届数学高一上期末调研模拟试题含解析_第4页
广东省深圳市育才中学2026届数学高一上期末调研模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省深圳市育才中学2026届数学高一上期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,,的零点依次为,则以下排列正确的是()A. B.C. D.2.我国南宋时期著名的数学家秦九韶在其著作《数书九章》中独立提出了一种求三角形面积的方法“三斜求积术”,即的面积,其中分别为的内角的对边,若,且,则的面积的最大值为()A. B.C. D.3.当时,在同一坐标系中,函数与的图象是()A. B.C. D.4.德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割,如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是两底角为的等腰三角形(另一种是两底角为的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金△ABC中,.根据这些信息,可得sin54°=()A. B.C. D.5.以,为基底表示为A. B.C. D.6.已知,则“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.在正方体AC1中,AA1与B1D所成角的余弦值是()A. B.C. D.8.已知为常数,函数在内有且只有一个零点,则常数的值形成的集合是A. B.C. D.9.sin210°·cos120°的值为()A. B.C. D.10.下列函数中,既是奇函数又在区间上是增函数的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.的边的长分别为,且,,,则__________.12.已知,且,若不等式恒成立,则实数的最大值是__________.13.已知直三棱柱的个顶点都在球的球面上,若,,,,则球的直径为________14.设集合,对其子集引进“势”的概念;①空集的“势”最小;②非空子集的元素越多,其“势”越大;③若两个子集的元素个数相同,则子集中最大的元素越大,子集的“势”就越大.最大的元素相同,则第二大的元素越大,子集的“势”就越大,以此类推.若将全部的子集按“势”从小到大顺序排列,则排在第位的子集是_________.15.若,其中,则的值为______16.已知的图象的对称轴为_________________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,其中(1)当时,求不等式的解集;(2)若关于x的方程的解集中恰好有一个元素,求m的取值范围;(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求m的取值范围18.已知函数f(x)=2asin+b的定义域为,函数最大值为1,最小值为-5,求a和b的值19.甲乙两人用两颗质地均匀的骰子(各面依次标有数字1、2、3、4、5、6的正方体)做游戏,规则如下:若掷出的两颗骰子点数之和为3的倍数,则由原投掷人继续投掷,否则由对方接着投掷.第一次由甲投掷(1)求第二次仍由甲投掷的概率;(2)求游戏前4次中乙投掷的次数为2的概率20.十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划,2020年某企业计划引进新能源汽车生产设备看,通过市场分析,全年需投入固定成本3000万元,每生产x(百辆)需另投入成本y(万元),且由市场调研知,每辆车售价6万元,且全年内生产的车辆当年能全部销售完(1)求出2020年的利润S(万元)关于年产量x(百辆)的函数关系式;(利润=销售额减去成本)(2)当2020年产量为多少百辆时,企业所获利润最大?并求出最大利润21.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】在同一直角坐标系中画出,,与的图像,数形结合即可得解【详解】函数,,的零点依次为,在同一直角坐标系中画出,,与的图像如图所示,由图可知,,,满足故选:B.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解2、A【解析】先根据求出关系,代入面积公式,利用二次函数的知识求解最值.【详解】因为,所以,即;由正弦定理可得,所以;当时,取到最大值.故选:A.3、B【解析】根据时指数函数与对数函数均为定义域内的增函数即可得答案.【详解】解:因,函数为指数函数,为对数函数,故指数函数与对数函数均为定义域内的增函数,故选:B.4、C【解析】先求出,再借助倍角公式求出,通过诱导公式求出sin54°.【详解】正五边形的一个内角为,则,,,所以故选:C.5、B【解析】设,利用向量相等可构造方程组,解方程组求得结果.【详解】设则本题正确选项:【点睛】本题考查平面向量基本定理的应用,关键是能够通过向量相等构造出方程组,属于基础题.6、B【解析】先由,得到,再由充分条件与必要条件的概念,即可得出结果.【详解】由解得,所以由“”能推出“”,反之,不能推出;因此“”是“”必要不充分条件.故选:B.【点睛】本题主要考查命题的必要不充分条件的判定,熟记充分条件与必要条件的概念即可,属于常考题型.7、A【解析】画出图象如下图所示,直线与所成的角为,其余弦值为.故选A.8、C【解析】分析:函数在内有且只有一个零点,等价于,有一个根,函数与只有一个交点,此时,,详解:,,,,,,,,,,,,,,,令,,,,,,,,,∵零点只有一个,∴函数与只有一个交点,此时,,.故选C.点睛:函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数有零点函数在轴有交点方程有根函数与有交点.9、A【解析】直接诱导公式与特殊角的三角函数求解即可.【详解】,故选:A.10、B【解析】先由函数定义域,排除A;再由函数奇偶性排除D,最后根据函数单调性,即可得出B正确,C错误.【详解】A选项,的定义域为,故A不满足题意;D选项,余弦函数偶函数,故D不满足题意;B选项,正切函数是奇函数,且在上单调递增,故在区间是增函数,即B正确;C选项,正弦函数是奇函数,且在上单调递增,所以在区间是增函数;因此是奇函数,且在上单调递减,故C不满足题意.故选:B.【点睛】本题主要考查三角函数性质的应用,熟记三角函数的奇偶性与单调性即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由正弦定理、余弦定理得答案:12、9【解析】利用求的最小值即可.【详解】,当且仅当a=b=时取等号,不等式恒成立,则m≤9,故m的最大值为9.故答案为:9.13、【解析】根据题设条件可以判断球心的位置,进而求解【详解】因为三棱柱的个顶点都在球的球面上,若,,,,所以三棱柱的底面是直角三角形,侧棱与底面垂直,的外心是斜边的中点,上下底面的中心连线垂直底面,其中点是球心,即侧面,经过球球心,球的直径是侧面的对角线的长,因为,,,所以球的半径为:故答案为:14、【解析】根据题意依次按“势”从小到大顺序排列,得到答案.【详解】根据题意,将全部的子集按“势”从小到大顺序排列为:,,,,,,,.故排在第6的子集为.故答案为:15、;【解析】因为,所以点睛:三角函数求值三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.16、【解析】根据诱导公式可得,然后用二倍角公式化简,进而可求.【详解】因为所以,故对称轴为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】(1)当时,解对数不等式即可(2)根据对数的运算法则进行化简,转化为一元二次方程,讨论的取值范围进行求解即可(3)根据条件得到恒成立,利用二次函数的性质求最值即求.【小问1详解】由,得,即∴且,解得【小问2详解】由题得,即,①当时,,经检验,满足题意②当时,(ⅰ)当时,,经检验,不满足题意(ⅱ)当且时,,,是原方程的解当且仅当,即;是原方程的解当且仅当,即因为解集中恰有一个元素则满足题意的m不存在综上,m的取值范围为【小问3详解】当时,,所以在上单调递减∴函数在区间上的最大值与最小值分别为,即,对任意成立因为,所以函数在区间上单调递增,当时,y有最小值,由,得故m的取值范围为18、a=12-6,b=-23+12,或a=-12+6,b=19-12.【解析】∵0≤x≤,∴-≤2x-≤.∴-≤sin≤1.若a>0,则,解得,若a<0,则,解得,综上可知,a=12-6,b=-23+12,或a=-12+6,b=19-12.19、(1)(2)【解析】(1)由题意利用古典概型求概率的计算公式求得结果(2)游戏的前4次中乙投掷的次数为2,包含3种情况,根据独立事件的乘法公式及互斥事件的加法公式,可计算结果【小问1详解】求第二次仍由甲投,说明第一次掷出的点数之和为3的倍数,所有的情况共有种,其中,掷出的点数之和为3的倍数的情况有、、、、、,、、、、、,共计12种情况,故第二次仍由甲投掷的概率为【小问2详解】由(1)可得掷出的两颗骰子点数之和为3的倍数的概率为,所以两颗骰子点数之和不为3的倍数的概率为,游戏的前4次中乙投掷的次数为2,可能乙投掷的次数为第二次第三次,则概率为,或第二次第四次,则概率为,或第三次第四次,则概率为,以上三个事件互斥,所以其概率为.20、(1)(2)100百辆时,1300万元【解析】(1)分和,由利润=销售额减去成本求解;(2)由(1)的结果,利用二次函数和对勾函数的性质求解.【小问1详解】解:由题意得当,,当时,,所以;【小问2详解】当时,,当时,,当时,由对勾函数,当时,,时,,时,即2020年产量为100百辆时,企业所获利润最大,且最大利润为1300万元21、(I).(II)【解析】解:(I

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论