版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省文登一中2026届高一上数学期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.圆(x-1)2+(y-1)2=1上的点到直线x-y=2的距离的最大值是()A.2 B.1+C.2+ D.1+2.设m、n是不同的直线,、、是不同的平面,有以下四个命题:(1)若、,则(2)若,,则(3)若、,则(4)若,,则其中真命题的序号是()A.(1)(4) B.(2)(3)C.(2)(4) D.(1)(3)3.“”的一个充分不必要条件是()A. B.C. D.4.设是定义在上的奇函数,且当时,,则()A. B.C. D.5.设命题p:,命题q:,则p是q成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.下列各角中,与终边相同的角为()A. B.160°C. D.360°7.下列命题正确的是A.在空间中两条直线没有公共点,则这两条直线平行B.一条直线与一个平面可能有无数个公共点C.经过空间任意三点可以确定一个平面D.若一个平面上有三个点到另一个平面的距离相等,则这两个平面平行8.已知,,则“使得”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件9.下列运算中,正确的是()A. B.C. D.10.弧长为3,圆心角为的扇形面积为A. B.C.2 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知一组样本数据x1,x2,…,x10,且++…+=2020,平均数,则该组数据的标准差为_________.12.函数fx=13.已知关于的不等式的解集为,其中,则的最小值是___________.14.已知幂函数在上单调递减,则______15.已知f(x)=mx3-nx+1(m,n∈R),若f(-a)=3,则f(a)=______16.已知函数若,则的值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=4cos(Ⅰ)求f(x)的最小正周期:(Ⅱ)求f(x)在区间-π618.已知函数.(1)当,为奇函数时,求b的值;(2)如果为R上的单调函数,请写出一组符合条件的a,b值;(3)若,,且的最小值为2,求的最小值.19.求函数在区间上的最大值和最小值.20.(1)计算(2)已知,求的值21.已知函数.(1)当时,求该函数的值域;(2)若,对于恒成立,求实数m的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据圆心到直线的距离加上圆的半径即为圆上点到直线距离的最大值求解出结果.【详解】因为圆心为,半径,直线的一般式方程为,所以圆上点到直线的最大距离为:,故选:B【点睛】本题考查圆上点到直线的距离的最大值,难度一般.圆上点到直线的最大距离等于圆心到直线的距离加上圆的半径,最小距离等于圆心到直线的距离减去半径.2、D【解析】故选D.3、D【解析】利用充分条件,必要条件的定义判断即得.【详解】由,可得,所以是的充要条件;所以是既不充分也不必要条件;所以是的必要不充分条件;所以是的充分不必要条件.故选:D.4、D【解析】根据奇函数的性质求函数值即可.【详解】故选:D5、B【解析】先解不等式,然后根据充分条件和必要条件的定义判断【详解】由,得,所以命题p:,由,得,所以命题q:,因为当时,不一定成立,当时,一定成立,所以p是q成立的必要不充分条件,故选:B6、C【解析】由终边相同角的定义判断【详解】与终边相同角为,而时,,其它选项都不存在整数,使之成立故选:C7、B【解析】根据平面的基本性质和空间中两直线的位置关系,逐一判定,即可得到答案【详解】由题意,对于A中,在空间中两条直线没有公共点,则这两条直线平行或异面,所以不正确;对于B中,当一条直线在平面内时,此时直线与平面可能有无数个公共点,所以是正确的;对于C中,经过空间不共线的三点可以确定一个平面,所以是错误的;对于D中,若一个平面上有三个点到另一个平面的距离相等,则这两个平面平行或相交,所以不正确,故选B【点睛】本题主要考查了平面的基本性质和空间中两直线的位置关系,其中解答中熟记平面的基本性质和空间中两直线的位置关系是解答的关键,着重考查了推理与论证能力,属于基础题8、C【解析】依据子集的定义进行判断即可解决二者间的逻辑关系.【详解】若使得,则有成立;若,则有使得成立.则“使得”是“”的充要条件故选:C9、C【解析】根据对数和指数的运算法则逐项计算即可.【详解】,故A错误;,故B错误;,故C正确;,故D错误.故选:C.10、B【解析】弧长为3,圆心角为,故答案为B二、填空题:本大题共6小题,每小题5分,共30分。11、9【解析】根据题意,利用方差公式计算可得数据的方差,进而利用标准差公式可得答案【详解】根据题意,一组样本数据,且,平均数,则其方差,则其标准差,故答案为:9.12、0【解析】先令t=cosx,则t∈-1,1,再将问题转化为关于【详解】解:令t=cosx,则则f(t)=t则函数f(t)在-1,1上为减函数,则f(t)即函数y=cos2x-2故答案为:0.13、【解析】根据一元二次不等式解集的性质,结合基本不等式、对钩函数的单调性进行求解即可.【详解】因为关于的不等式的解集为,所以是方程的两个不相等的实根,因此有,因为,所以,当且仅当时取等号,即时取等号,,设,因为函数在上单调递增,所以当时,函数单调递增,所以,故答案为:14、##【解析】依题意得且,即可求出,从而得到函数解析式,再代入求值即可;【详解】解:由题意得且,则,,故故答案为:15、【解析】直接证出函数奇偶性,再利用奇偶性得解【详解】由题意得,所以,所以为奇函数,所以,所以【点睛】本题是函数中的给值求值问题,一般都是利用函数的周期性和奇偶性把未知的值转化到已知值上,若给点函数为非系非偶函数可试着构造一个新函数为奇偶函数从而求解16、4【解析】根据自变量所属的区间,代入相应段的解析式求值即可.【详解】由题意可知,,解得,故答案为:4三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)2,-1【解析】(Ⅰ)因为f=4=3故fx最小正周期为(Ⅱ)因为-π6≤x≤于是,当2x+π6=π2,即x=当2x+π6=-π6,即点睛:本题主要考查了两角和的正弦公式,辅助角公式,正弦函数的性质,熟练掌握公式是解答本题的关键.18、(1)(2),(答案不唯一,满足即可)(3)【解析】(1)当时,根据奇函数的定义,可得,化简整理,即可求出结果;(2)由函数和函数在上的单调递性,可知,即可满足题意,由此写出一组即可;(3)令,则,然后再根据基本不等式和已知条件,可得,再根据基本不等式即可求出结果.【小问1详解】解:当时,,因为是奇函数,所以,即,得,可得;【小问2详解】解:当,时,此时函数为增函数.(答案不唯一,满足即可)检验:当和时,,,均是上的单调递增函数,所以此时是上的单调递增函数,满足题意;【小问3详解】解:令,则,所以,即,当且仅当,即时等号成立,所以,由题意,,所以.由,当且仅当时等号成立,由解得,所以.19、最大值53,最小值4【解析】先化简,然后利用换元法令t=2x根据变量x的范围求出t的范围,将原函数转化成关于t的二次函数,最后根据二次函数的性质求在闭区间上的最值即可【详解】∵,令,,则,对称轴,则在上单调递减;在上单调递增.则,即时,;,即时,.【点睛】本题主要考查了函数的最值及其几何意义,以及利用换元法转化成二次函数求解值域的问题,属于基础题20、(1);(2)3.【解析】(1)由题意结合对数的运算法则和对数恒等式的结论可得原式的值为;(2)令,计算可得原式.试题解析:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年喀什职业技术学院马克思主义基本原理概论期末考试笔试题库
- 2025年哈尔滨开放大学马克思主义基本原理概论期末考试参考题库
- 2025年哈尔滨职业技术大学马克思主义基本原理概论期末考试真题汇编
- 旅游景区智能导览系统采购协议
- 应急管理厅安全培训证书课件
- 应急演练培训课件
- 2026年团队协作人工智能研发合作合同协议
- 应急救护培训课件
- 企业员工培训与素质发展计划目标制度
- 应急安全培训教师职责
- 电力系统经济学原理课后习题及答案
- 《大学生美育》 课件 第七章 艺术美
- 智能水杯行业状况分析报告
- 电力部门春节安全生产培训
- 公司财务部门工作职责
- 原辅材料领料申请单
- 人教版九年级数学上册22 3 3拱桥问题和运动中的抛物线 一课一练 (含答案)
- 2023年个税工资表
- 网球运动基本知识及规则课件
- 2023新青年新机遇新职业发展趋势白皮书-人民数据研究院
- 管理学原理教材-大学适用
评论
0/150
提交评论