版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖南省怀化市中方一中高二上数学期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是双曲线:的右焦点,是坐标原点,过作的一条渐近线的垂线,垂足为,并交轴于点.若,则的离心率为()A. B.C.2 D.2.“且”是“”的()A.充分不必要条件 B.必要不充分条件C充要条件 D.既不充分也不必要条件3.2020年12月4日,嫦娥五号探测器在月球表面第一次动态展示国旗.1949年公布的《国旗制法说明》中就五星的位置规定:大五角星有一个角尖正向上方,四颗小五角星均各有一个角尖正对大五角星的中心点.有人发现,第三颗小星的姿态与大星相近.为便于研究,如图,以大星的中心点为原点,建立直角坐标系,,,,分别是大星中心点与四颗小星中心点的联结线,,则第三颗小星的一条边AB所在直线的倾斜角约为()A. B.C. D.4.圆心为的圆,在直线x﹣y﹣1=0上截得的弦长为,那么,这个圆的方程为()A. B.C. D.5.在空间直角坐标系下,点关于轴对称的点的坐标为()A. B.C. D.6.如图,是水平放置的的直观图,其中,,分别与轴,轴平行,则()A.2 B.C.4 D.7.等比数列的各项均为正数,且,则()A.5 B.10C.4 D.8.在x轴与y轴上截距分别为,2的直线的倾斜角为()A.45° B.135°C.90° D.180°9.某城市2017年的空气质量状况如下表所示:污染指数3060100110130140概率其中污染指数时,空气质量为优;时,空气质量为良;时,空气质量为轻微污染,该城市2017年空气质量达到良或优的概率为()A. B.C. D.10.已知向量,则()A.5 B.6C.7 D.811.已知三个观测点,在的正北方向,相距,在的正东方向,相距.在某次爆炸点定位测试中,两个观测点同时听到爆炸声,观测点晚听到,已知声速为,则爆炸点与观测点的距离是()A. B.C. D.12.已知等差数列的前项和为,若,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知曲线的焦距是10,曲线上的点到一个焦点的距离是2,则点到另一个焦点的距离为__________.14.直线与直线的夹角大小等于_______15.若将抛掷一枚硬币所出现的结果“正面(朝上)”与“反面(朝上)”,分别记为H、T,相应的抛掷两枚硬币的样本空间为,则与事件“一个正面(朝上)一个反面(朝上)”对应的样本空间的子集为______16.已知点F是抛物线的焦点,点,点P为抛物线上的任意一点,则的最小值为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线过点,O为坐标原点(1)求焦点的坐标及其准线方程;(2)抛物线C在点A处的切线记为l,过点A作与切线l垂直的直线,与抛物线C的另一个交点记为B,求的面积18.(12分)已知函数,.(1)若函数与在x=1处的切线平行,求函数在处的切线方程;(2)当时,若恒成立,求实数a的取值范围.19.(12分)已知圆C经过点,,且它的圆心C在直线上.(1)求圆C的方程;(2)过点作圆C的两条切线,切点分别为M,N,求三角形PMN的面积.20.(12分)如图,在三棱锥中,侧面PBC是边长为2的等边三角形,M,N分别为AB,AP的中点.过MN的平面与侧面PBC交于EF(1)求证:;(2)若平面平面ABC,,求直线PB与平面PAC所成角的正弦值21.(12分)函数.(1)当时,解不等式;(2)若不等式对任意恒成立,求实数a的取值范围.22.(10分)在平面直角坐标系中,过点且倾斜角为的直线与曲线(为参数)交于两点.(1)将曲线的参数方程转化为普通方程;(2)求长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由条件建立a,b,c的关系,由此可求离心率的值.【详解】设,则,∵,∴,∴,∴,∴,∴,∴离心率,故选:A.2、A【解析】按照充分必要条件的判断方法判断,“且”能否推出“”,以及“”能否推出“且”,判断得到正确答案,【详解】当且时,成立,反过来,当时,例:,不能推出且.所以“且”是“”的充分不必要条件.故选:A【点睛】本题考查充分不必要条件的判断,重点考查基本判断方法,属于基础题型.3、C【解析】由五角星的内角为,可知,又平分第三颗小星的一个角,过作轴平行线,则,即可求出直线的倾斜角.【详解】都为五角星的中心点,平分第三颗小星的一个角,又五角星的内角为,可知,过作轴平行线,则,所以直线的倾斜角为,故选:C【点睛】关键点点睛:本题考查直线倾斜角,解题的关键是通过做辅助线找到直线的倾斜角,通过几何关系求出倾斜角,考查学生的数形结合思想,属于基础题.4、A【解析】由垂径定理,根据弦长的一半及圆心到直线的距离求出圆半径,即可写出圆的标准方程.【详解】圆心到直线x﹣y﹣1=0的距离弦长,设圆半径为r,则故r=2则圆的标准方程为故选:A【点睛】本题主要考查直线与圆的位置关系和圆的标准方程,属于基础题.5、C【解析】由空间中关于坐标轴对称点坐标的特征可直接得到结果.【详解】关于轴对称的点的坐标不变,坐标变为相反数,关于轴对称的点为.故选:C.6、D【解析】先确定是等腰直角三角形,求出,再确定原图的形状,进而求出.【详解】由题意可知是等腰直角三角形,,其原图形是,,,,则,故选:D.7、A【解析】利用等比数列的性质及对数的运算性质求解.【详解】由题有,则=5.故选:A8、A【解析】按照斜率公式计算斜率,即可求得倾斜角.【详解】由题意直线过,设直线斜率为,倾斜角为,则,故.故选:A.9、A【解析】根据互斥事件的和的概率公式求解即可.【详解】由表知空气质量为优的概率是,由互斥事件的和的概率公式知,空气质量为良的概率为,所以该城市2017年空气质量达到良或优的概率,故选:A【点睛】本题主要考查了互斥事件,互斥事件和的概率公式,属于中档题.10、A【解析】利用空间向量的模公式求解.【详解】因向量,所以,故选:A11、D【解析】根据题意作出示意图,然后结合余弦定理解三角形即可求出结果.【详解】设爆炸点为,由于两个观测点同时听到爆炸声,则点位于的垂直平分线上,又在的正东方向且观测点晚听到,则点位于的左侧,,,,设,则,解得,则爆炸点与观测点的距离为,故选:D.12、B【解析】根据和可求得,结合等差数列通项公式可求得.【详解】设等差数列公差为,由得:;又,,.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、或10.【解析】对参数a进行讨论,考虑曲线是椭圆和双曲线的情况,进而结合椭圆与双曲线的定义和性质求得答案.【详解】由题意,曲线的半焦距为5,若曲线是焦点在x轴上的椭圆,则a>16,所以,而椭圆上的点到一个焦点距离是2,则点到另一个焦点的距离为;若曲线是焦点在y轴上的椭圆,则0<a<16,所以,舍去;若曲线是双曲线,则a<0,容易判断双曲线的焦点在y轴,所以,不妨设点P在双曲线的上半支,上下焦点分别为,因为实半轴长为4,容易判断点P到下焦点的距离的最小值为4+5=9>2,不合题意,所以点P到上焦点的距离为2,则它到下焦点的距离.故答案为:或10.14、##【解析】根据直线的倾斜角可得答案.【详解】直线是与轴平行的直线,直线的斜率为1,即与轴的夹角为角,故直线与直线的夹角大小等于.故答案为:.15、,,,【解析】先写出与事件“一个正面(朝上)一个反面(朝上)”对应的样本空间,再写出其全部子集即可.【详解】与事件“一个正面(朝上)一个反面(朝上)”对应的样本空间为,此空间的子集为,,,故答案为:,,,16、3【解析】根据抛物线的定义可求最小值.【详解】如图,过作抛物线准线的垂线,垂足为,连接,则,当且仅当共线时等号成立,故的最小值为3,故答案为:3.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)焦点,准线方程;(2)12.【解析】(1)将点A坐标代入求出,写出抛物线方程即可作答.(2)由(1)的结论求出切线l的斜率,进而求得直线AB方程,联立直线AB与抛物线C的方程,求出弦AB长及点O到直线AB距离计算作答.【小问1详解】依题意,,解得,则抛物线的方程为:,所以抛物线的焦点,准线方程为.【小问2详解】显然切线l的斜率存在,设切线l的方程为:,由消去x并整理得:,依题意得,解得,因直线,则直线AB的斜率为-1,方程为:,即,由消去x并整理得:,解得,因此有,而,则,而点到直线AB:的距离,则,所以的面积是12.18、(1);(2).【解析】(1)求出函数的导数,利用切线平行求出a,即可求出切线方程;(2)先把已知条件转化为,令,,利用导数求出的最小值,即可求出实数a的取值范围.【详解】(1),故,而,故,故,解得:,故,故的切线方程是:,即;(2)当时,恒成立等价于,令,.则,令,解得:;令,解得:;所以在上单减,在上单增,所以,所以.即实数a的取值范围为.19、(1);(2).【解析】(1)由题设知,设圆心,应用两点距离公式列方程求参数a,进而确定圆心坐标、半径,写出圆C的方程;(2)利用两点距离公式、切线的性质可得、,再应用三角形面积公式求三角形PMN的面积.【小问1详解】由已知,可设圆心,且,从而有,解得.所以圆心,半径.所以,圆C的方程为.【小问2详解】连接PC,CM,CN,MN,由(1)知:圆心,半径.所以.又PM,PN是圆C的切线,所以,,则,,所以,所以.20、(1)证明见解析(2)【解析】(1)由题意先证明平面PBC,然后由线面平行的性质定理可证明.(2)由平面平面ABC,取BC中点O,则平面ABC,可得,由条件可得,以O坐标原点,分别以OB,AO,OP为x,y,z轴建立空间直角坐标系,利用向量法求解即可.【小问1详解】因为M,N分别为AB,AP的中点,所以,又平面PBC,所以平面PBC,因为平面平面,所以【小问2详解】因为平面平面ABC,取BC中点O,连接PO,AO,因为是等边三角形,所以,所以平面ABC,故,又因,所以,以O为坐标原点,分别以OB,AO,OP为x,y,z轴建立空间直角坐标系,可得:,,,,,所以,,,设平面PAC的法向量为,则,则,令,得,,所以,所以直线PB与平面PAC所成角的正弦值为21、(1);(2).【解析】(1)由题设,原不等式等价于,分类讨论即可得出结论;(2)不等式对任意恒成立,即,即可求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年解除保险合同协议
- 2026年办公办公系统开发服务合同协议
- 2026年超市购物车广告投放合同协议
- 2026年保险经纪合同书模板2026
- 家政服务员培训课件高级
- 培训讲师演讲稿
- 快递安全事故培训内容课件
- 培训班创意绘画课件
- 安全培训72小时内容课件
- 安全培训30号令解读课件
- GB/T 4706.11-2024家用和类似用途电器的安全第11部分:快热式热水器的特殊要求
- SH/T 3115-2024 石油化工管式炉轻质浇注料衬里工程技术规范(正式版)
- FZ∕T 61002-2019 化纤仿毛毛毯
- 《公输》课文文言知识点归纳
- 23秋国家开放大学《机电一体化系统设计基础》形考作业1-3+专题报告参考答案
- 开封银行健康知识讲座
- 垃圾房改造方案
- 2023年工装夹具设计工程师年终总结及下一年计划
- 闭合导线平差计算表-电子表格自动计算
- 第七章腭裂课件
- 《大卫·科波菲尔》
评论
0/150
提交评论