版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省新沂市第一学校2026届数学高一上期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则的值等于()A. B.C. D.2.若是圆的弦,的中点是(-1,2),则直线的方程是()A. B.C. D.3.直线的倾斜角A. B.C. D.4.已知函数为奇函数,且当时,,则()A. B.C. D.5.将函数y=sin(2x+)的图象向右平移个单位长度后,得到的图象对应的函数解析式为()A. B.C. D.6.函数的零点一定位于区间()A. B.C. D.7.若,为第四象限角,则的值为()A. B.C. D.8.已知幂函数的图象过点,则的值为()A. B.1C.2 D.49.已知,且,则的最小值为A. B.C. D.10.直线与圆交点的个数为A.2个 B.1个C.0个 D.不确定二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数f(x)=lg(x2+2ax-5a)在[2,+∞)上是增函数,则a的取值范围为______12.密位广泛用于航海和军事,我国采用“密位制”是6000密位制,即将一个圆圈分成6000等份,每一个等份是一个密位,那么600密位等于___________rad.13.已知函数,若,不等式恒成立,则的取值范围是___________.14.幂函数,当取不同的正数时,在区间上它们的图像是一族美丽的曲线(如图).设点,连接,线段恰好被其中的两个幂函数的图像三等分,即有.那么_______15.圆的半径是,弧度数为3的圆心角所对扇形的面积等于___________16.若是第三象限的角,则是第________象限角;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若在上单调递增,求的取值范围;(2)讨论函数的零点个数.18.如图,、分别是的边、上的点,且,,交于.(1)若,求的值;(2)若,,,求的值.19.袋子里有6个大小、质地完全相同且带有不同编号的小球,其中有1个红球,2个白球,3个黑球,从中任取2个球.(1)写出样本空间;(2)求取出两球颜色不同的概率;(3)求取出两个球中至多一个黑球的概率.20.已知全集,,.(1)当时,,;(2)若,求实数a的取值范围,21.已知函数,.(1)求的最小正周期;(2)求在区间上的最大值和最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由分段函数的定义计算【详解】,,所以故选:B2、B【解析】由题意知,直线PQ过点A(-1,2),且和直线OA垂直,故其方程为:y﹣2=(x+1),整理得x-2y+5=0故答案为B3、A【解析】先求得直线的斜率,然后根据斜率和倾斜角的关系,求得.【详解】可得直线的斜率为,由斜率和倾斜角的关系可得,又∵∴故选:A.【点睛】本小题主要考查直线倾斜角与斜率,属于基础题.4、C【解析】根据奇函数的定义得到,又由解析式得到,进而得到结果.【详解】因为函数为奇函数,故得到当时,,故选:C.5、B【解析】直接利用函数图像变化原则:“左加右减,上加下减”得到平移后的函数解析式【详解】函数图像向右平移个单位,由得,故选B【点睛】本题考查函数图像变换:“左加右减,上加下减”,需注意“左加右减”时平移量作用在x上,即将变成,是函数图像平移了个单位,而非个单位6、C【解析】根据零点存在性定理,若在区间有零点,则,逐一检验选项,即可得答案.【详解】由题意得为连续函数,且在单调递增,,,,根据零点存在性定理,,所以零点一定位于区间.故选:C7、D【解析】直接利用平方关系即可得解.【详解】解:因为,为第四象限角,所以.故选:D.8、C【解析】设出幂函数的解析式,利用给定点求出解析式即可计算作答.【详解】依题意,设,则有,解得,于得,所以.故选:C9、C【解析】运用乘1法,可得由x+y=(x+1)+y﹣1=[(x+1)+y]•()﹣1,化简整理再由基本不等式即可得到最小值【详解】由x+y=(x+1)+y﹣1=[(x+1)+y]•1﹣1=[(x+1)+y]•2()﹣1=2(21≥3+47当且仅当x,y=4取得最小值7故选C【点睛】本题考查基本不等式的运用:求最值,注意乘1法和满足的条件:一正二定三等,考查运算能力,属于中档题10、A【解析】化为点斜式:,显然直线过定点,且定点在圆内∴直线与圆相交,故选A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用对数函数的定义域以及二次函数的单调性,转化求解即可【详解】解:函数f(x)=lg(x2+2ax﹣5a)在[2,+∞)上是增函数,可得:,解得a∈[﹣2,4)故答案为[﹣2,4)【点睛】本题考查复合函数的单调性的应用,考查转化思想以及计算能力12、【解析】根据周角为,结合新定义计算即可【详解】解:∵圆周角为,∴1密位,∴600密位,故答案为:13、【解析】原问题等价于时,恒成立和时,恒成立,从而即可求解.【详解】解:由题意,因为,不等式恒成立,所以时,恒成立,即,所以;时,恒成立,即,令,则,由对勾函数的单调性知在上单调递增,在上单调递减,所以时,,所以;综上,.所以的取值范围是.故答案为:14、1【解析】求出的坐标,不妨设,,分别过,,分别代入点的坐标,变形可解得结果.【详解】因为,,,所以,,不妨设,,分别过,,则,,则,所以故答案为:115、【解析】根据扇形的面积公式,计算即可.【详解】由扇形面积公式知,.【点睛】本题主要考查了扇形的面积公式,属于容易题.16、一或三【解析】根据的范围求得的范围,从而确定正确答案.【详解】依题意,,,所以当为奇数时,在第三象限;当为偶数时,在第一象限.故答案:一或三三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)当时,有一个零点;当时,且当时,有两个零点,当时,有一个零点【解析】(1)由、都是单调递增函数可得的单调性,利用单调性可得答案;(2)时有一个零点;当时,利用单独单调性求得,分和讨论可得答案.【小问1详解】当时,单调递增,当时,单调递增,若在上单调递增,只需,.【小问2详解】当时,,此时,即,有一个零点;当时,,此时在上单调递增,,若,即,此时有一个零点;若,即,此时无零点,故当时,有两个零点,当时,有一个零点18、(1);(2).【解析】(1)利用平面向量加法的三角形法则可求出、的值,进而可计算出的值;(2)设,设,根据平面向量的基本定理可得出关于、的方程组,解出这两个未知数,可得出关于、的表达式,然后用、表示,最后利用平面向量数量积的运算律和定义即可计算出的值.【详解】(1),,,因此,;(2)设,再设,则,即,所以,,解得,所以,因此,.【点睛】本题考查利用平面向量的基本定理求参数,同时也考查了平面向量数量积的计算,解题的关键就是选择合适的基底来表示向量,考查计算能力,属于中等题.19、(1)答案见解析;(2);(3).【解析】(1)将1个红球记为个白球记为个黑球记为,进而列举出所有可能性,进而得到样本空间;(2)由题意,有1红1白,1红1黑,1白1黑,共三大类情况,由(1),列举出所有可能性,进而求出概率;(3)由题意,有1红1白,1红1黑,1白1黑,2白,共四大类情况,由(1),列举出所有可能性,进而求出概率【小问1详解】将1个红球记为个白球记为个黑球记为,则样本空间,共15个样本点.【小问2详解】记A事件为“取出两球颜色不同”,则两球颜色可能是1红1白,1红1黑,1白1黑,则包含11个样本点,所以.【小问3详解】记事件为“取出两个球至多有一个黑球”,则两球颜色可能是1红1白,1红1黑,1白1黑,2白,则包含12个样本点,所以.20、(1),或;(2)【解析】(1)解不等式,求出,进而求出与;(2)利用交集结果得到集合包含关系,进而求出实数a的取值范
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年抚州医药学院马克思主义基本原理概论期末考试真题汇编
- 2025年保定电力职业技术学院马克思主义基本原理概论期末考试笔试真题汇编
- 2025年郑州职业技术学院马克思主义基本原理概论期末考试真题汇编
- 2024年乐山师范学院马克思主义基本原理概论期末考试真题汇编
- 2025年顺德职业技术大学马克思主义基本原理概论期末考试笔试题库
- 2025年太原幼儿师范高等专科学校马克思主义基本原理概论期末考试参考题库
- 2025年山西医科大学汾阳学院马克思主义基本原理概论期末考试真题汇编
- 2025年CMA美国注册管理会计师《财务规划与分析》模拟题及答案
- 应用化工技术介绍
- 酒店客房升级方案
- 医院电子病历四级建设需求
- 埃森哲组织架构
- 餐饮供货合同餐饮供货合同
- 高三英语阅读理解:文章标题型
- 《乡土中国》 《无讼》课件
- GB/T 9870.1-2006硫化橡胶或热塑性橡胶动态性能的测定第1部分:通则
- GB/T 4675.1-1984焊接性试验斜Y型坡口焊接裂纹试验方法
- GB/T 1687.3-2016硫化橡胶在屈挠试验中温升和耐疲劳性能的测定第3部分:压缩屈挠试验(恒应变型)
- FZ/T 73009-2021山羊绒针织品
- 资产评估收费管理办法(2023)2914
- 消防安全应急预案及架构图
评论
0/150
提交评论