版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济南市长清第一中学大学科技园校区2026届高一数学第一学期期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行两步恰竿齐,五尺板高离地……”某教师根据这首词设计一题:如图,已知,,则弧的长()A. B.C. D.2.计算2sin2105°-1的结果等于()A. B.C. D.3.函数在区间上的所有零点之和等于()A.-2 B.0C.3 D.24.圆x2+y2+2x﹣4y+1=0的半径为()A.1 B.C.2 D.45.如图,在直角梯形ABCD中,AB⊥BC,AD=DC=2,CB=,动点P从点A出发,由A→D→C→B沿边运动,点P在AB上的射影为Q.设点P运动的路程为x,△APQ的面积为y,则y=f(x)的图象大致是()A. B.C. D.6.已知函数的图像如图所示,则A. B.C. D.7.函数是()A.偶函数,在是增函数B.奇函数,在是增函数C.偶函数,在是减函数D.奇函数,在是减函数8.已知集合,,则()A. B.C. D.9.已知全集,,,则()=()A.{} B.{}C.{} D.{}10.已知,则下列选项中正确的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小正周期为,且.当时,则函数的对称中心__________;若,则值为__________.12.已知,则__________.13.函数最小值为______14.写出一个同时具有下列性质①②的函数______.(注:不是常数函数)①;②.15.函数f(x),若f(a)=4,则a=_____16.函数一段图象如图所示则的解析式为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的最小正周期为.(1)求的值和的单调递增区间;(2)令函数,求在区间上的值域.18.设集合.(1)当时,求实数的取值范围;(2)当时,求实数的取值范围.19.已知幂函数的图象经过点.(1)求的解析式;(2)用定义证明:函数在区间上单调递增.20.已知,.(1)若,求;(2)若,求实数的取值范围.21.利用拉格朗日(法国数学家,1736-1813)插值公式,可以把二次函数表示成的形式.(1)若,,,,,把的二次项系数表示成关于f的函数,并求的值域(此处视e为给定的常数,答案用e表示);(2)若,,,,求证:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】求出长后可得,再由弧长公式计算可得【详解】由题意,解得,所以,,所以弧的长为故选:C2、D【解析】.选D3、C【解析】分析:首先确定函数的零点,然后求解零点之和即可.详解:函数的零点满足:,解得:,取可得函数在区间上的零点为:,则所有零点之和为.本题选择C选项.点睛:本题主要考查三角函数的性质,函数零点的定义及其应用等知识,意在考查学生的转化能力和计算求解能力.4、C【解析】将圆的方程化为标准方程即可得圆的半径.【详解】由圆x2+y2+2x﹣4y+1=0化为标准方程有:,所以圆的半径为2.故选:C【点睛】本题考查圆的一般方程与标准方程的互化,并由此得出圆的半径大小,属于基础题.5、D【解析】结合P点的运动轨迹以及二次函数,三角形的面积公式判断即可【详解】解:P点在AD上时,△APQ是等腰直角三角形,此时f(x)=•x•x=x2,(0<x<2)是二次函数,排除A,B,P在DC上时,PQ不变,AQ增加,是递增的一次函数,排除C,故选D【点睛】本题考查了数形结合思想,考查二次函数以及三角形的面积问题,是一道基础题6、B【解析】本题首先可以通过图像得出函数的周期,然后通过函数周期得出的值,再然后通过函数过点求出的值,最后将带入函数解析式即可得出结果【详解】因为由图像可知,解得,所以,,因为由图像可知函数过点,所以,解得,取,,,所以,故选B【点睛】本题考查了三角函数的相关性质,主要考查了三角函数图像的相关性质,考查了三角函数的周期性的求法,考查计算能力,考查数形结合思想,是中档题7、B【解析】利用奇偶性定义判断的奇偶性,根据解析式结合指数函数的单调性判断的单调性即可.【详解】由且定义域为R,故为奇函数,又是增函数,为减函数,∴为增函数故选:B.8、B【解析】化简集合A,由交集定义直接计算可得结果.【详解】化简可得,又所以.故选:B.9、D【解析】先求得,再求与集合的交集即可.【详解】因为全集,,,故可得,则().故选:.10、A【解析】计算的取值范围,比较范围即可.【详解】∴,,.∴.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】根据最小正周期以及关于的方程求解出的值,根据对称中心的公式求解出在上的对称中心;先求解出的值,然后根据角的配凑结合两角差的正弦公式求解出的值.【详解】因为最小正周期为,所以,又因为,所以,所以或,又因为,所以,所以,所以,令,所以,又因为,所以,所以对称中心为;因为,,所以,若,则,不符合,所以,所以,所以,故答案为:;.12、##【解析】首先根据同角三角函数的基本关系求出,再利用二倍角公式及同角三角函数的基本关系将弦化切,最后代入计算可得;【详解】解:因为,所以,所以故答案为:13、【解析】根据,并结合基本不等式“1”的用法求解即可.【详解】解:因为,所以,当且仅当时,等号成立故函数的最小值为.故答案为:14、【解析】根据函数值以及函数的周期性进行列举即可【详解】由知函数的周期是,则满足条件,,满足条件,故答案为:(答案不唯一)15、1或8【解析】当时,,当时,,分别计算出的值,然后在检验.【详解】当时,,解得,满足条件.当时,,解得,满足条件所以或8.故对答案为:1或8【点睛】本题考查分段函数根据函数值求自变量,属于基础题.16、【解析】由函数的最值求出A,由周期求出,由五点法作图求出的值,从而得到函数的解析式【详解】由函数的图象的顶点的纵坐标可得,再由函数的周期性可得,再由五点法作图可得,故函数的解析式为,故答案为【点睛】本题主要考查函数的部分图象求解析式,由函数的最值求出A,由周期求出,由五点法作图求出的值,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),函数单调递增区间:,;(2).【解析】(1)利用函数的周期求解,得到函数的解析式,然后求解函数的单调增区间;(2)由题得,再利用三角函数的图象和性质求解.【详解】解:(1)函数的最小正周期.可得,,所以,所以函数,由,,所以,,可得,,所以函数单调递增区间:,(2)由题得,因为所以所以所以函数在区间上的值域为.18、(1)(2)【解析】(1)化简集合A,B,由,得,转化为不等式关系,解之即可;(2)由,得到或,解之即可.试题解析:(1),,,即.(2)法一:,或,即法二:当时,或解得或,于是时,即19、(1);(2)证明见解析.【解析】(1)设幂函数,由得α的值即可;(2)任取且,化简并判断的正负即可得g(x)的单调性.小问1详解】设,则,解得,∴;【小问2详解】由(1)可知,任取且,则,∵,则,,故,因此函数在上为增函数.20、(1);(2).【解析】(1)根据题意,分别求出集合、,即可得到;(2)根据题意得,结合,即可得到实数的取值范围.【详解】(1)当时,,或,因此.(2)由(1)知,或,故,又因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年河北女子职业技术学院单招综合素质考试参考题库带答案解析
- 2026年黑龙江农业工程职业学院单招职业技能笔试参考题库带答案解析
- 投资协议合同协议(2025年风险投资)
- 投资合作协议2025年项目
- 2026年德阳科贸职业学院单招职业技能笔试备考试题带答案解析
- 2026年福州外语外贸学院单招综合素质考试参考题库带答案解析
- 2026年湖南工业职业技术学院高职单招职业适应性测试参考题库有答案解析
- 2026年安徽工贸职业技术学院单招综合素质笔试参考题库带答案解析
- 2026年崇左幼儿师范高等专科学校单招综合素质笔试参考题库带答案解析
- 2026年安阳职业技术学院单招综合素质笔试参考题库带答案解析
- GB/T 10810.1-2025眼镜镜片第1部分:单焦和多焦
- 家具油漆翻新施工方案
- 高中家长会 高一选科指导家长会课件
- 2025年大庆职业学院单招职业技能测试题库(名师系列)
- 法院管辖权异议申请书
- 厂房机电安装施工方案
- 2025年鞍钢集团招聘笔试参考题库含答案解析
- 2024建筑新能源应用设计标准
- 2024年客运资格证考试试题及答案解析
- 医院主要领导综合能力素质自我评价
- 消防设施设备维保项目投标文件(消防维保)
评论
0/150
提交评论