【3套】九年级(上)数学期末考试试题及答案_第1页
【3套】九年级(上)数学期末考试试题及答案_第2页
【3套】九年级(上)数学期末考试试题及答案_第3页
【3套】九年级(上)数学期末考试试题及答案_第4页
【3套】九年级(上)数学期末考试试题及答案_第5页
已阅读5页,还剩75页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

九年级(上)数学期末考试试题及答案一.选择题(每小题3分,满分30分)1.在﹣3,1,0,﹣1这四个数中,最大的数是()A.﹣3 B.﹣1 C.0 D.12.如图是由五个相同的小正方体搭成的一个几何体,从上面看到的几何体的形状图是()A. B. C. D.3.为庆祝首个“中国农民丰收节”,十渡镇西河村举办“西河稻作文化节”活动.西河水稻种植历史悠久,因“色白粒粗,味极香美,七煮不烂”而享誉京城.已知每粒稻谷重约0.000035千克,将0.000035用科学记数法表示应为()A.35×10﹣6 B.3.5×10﹣6 C.3.5×10﹣5 D.0.35×10﹣44.下列计算正确的是()A.a+2b=2ab B.a﹣(1﹣a)=﹣1 C.a3•a2=a5 D.a6÷a2=a35.在如图的四个转盘中,C,D转盘被分成8等份,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是()A. B. C. D.6.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB的值是()A. B. C. D.7.将直线y=2x向右平移2个单位,再向上移动4个单位,所得的直线的解析式是()A.y=2x B.y=2x+2 C.y=2x﹣4 D.y=2x+48.解分式方程,分以下四步,其中,错误的一步是()A.方程两边分式的最简公分母是(x﹣1)(x+1) B.方程两边都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6 C.解这个整式方程,得x=1 D.原方程的解为x=19.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1,A2,…,An分别是正方形对角线的交点,则n个正方形重叠形成的重叠部分的面积和为()A.cm2 B.cm2 C.cm2 D.()ncm210.如图,正方形ABCD的边长AB=4,分别以点A、B为圆心,AB长为半径画弧,两弧交于点E,则的长是()A. B.π C. D.二.填空题(满分16分,每小题4分)11.对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2==,那么6※3=.12.如图,线段BD、CE相交于点A,DE∥BC.如果AB=4,AD=2,DE=1.5,那么BC的长为.13.某班50名同学积极响应“为雅安地震灾区献爱心捐款活动”,并将所捐款情况统计并制成统计图,根据图中信息,捐款金额的众数和中位数分别是元.14.抛物线y=2(x+1)2﹣3的顶点坐标为.三.解答题(共6小题,满分54分)15.(12分)(1)计算:(﹣1)2014+(sin30°)﹣1+()0﹣|3﹣|+83×(﹣0.125)3(2)解不等式组:把解集在数轴上表示出来,并将解集中的整数解写出来.16.(6分)计算:+17.(8分)某数学兴趣小组的同学在一次活动中,为了测量某建筑物AB的高,他们来到另一建筑物CD上的点C处进行观察,如图所示,他们测得建筑物AB顶部A的仰角为30°,底部B的俯角为45°,已知建筑物AB、CD的距离DB为12m,求建筑物AB的高.18.(8分)国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)获得一等奖的学生人数;(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.19.(10分)在平面直角坐标系中,一次函数y=﹣x+b的图象与反比例函数y=(k≠0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣2,3).(1)求一次函数和反比例函数解析式.(2)若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求△ABF的面积.(3)根据图象,直接写出不等式﹣x+b>的解集.20.(10分)如图:△ABC是⊙O的内接三角形,∠ACB=45°,∠AOC=150°,过点C作⊙O的切线交AB的延长线于点D.(1)求证:CD=CB;(2)如果⊙O的半径为,求AB的长.四.填空题(共5小题,满分20分,每小题4分)21.设α,β是方程x2﹣x﹣2019=0的两个实数根,则α3﹣2021α﹣β的值为;22.规定用符号[m]表示一个实数m的整数部分,例如:=0,[3.14]=3.按此规定[+2]的值为.23.从1,2,3,4四个数中任取一个数作为AC的长度,又从4,5中任取一个数作为BC的长度,AB=6,则AB、AC、BC能构成三角形的概率是.24.如图,函数y=﹣x与函数y=﹣的图象相交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为点C,D.则四边形ACBD的面积为.25.如图,在△ABC中,AB=AC=2,点P在BC上.若点P为BC的中点,则m=AP2+BP•PC的值为;若BC边上有100个不同的点P1,P2,…,P100,且mi=APi2+BPi•PiC(i=1,2,…,100),则m=m1+m2+…+m100的值为.五.解答题(共3小题,满分30分)26.(8分)今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如表:周数x1234价格y(元/千克)22.22.42.6(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y与x的函数关系式;(2)进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y(元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y与周数x的变化情况满足二次函数y=﹣x2+bx+c,请求出5月份y与x的函数关系式;(3)若4月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=x+1.2,5月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=﹣x+2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?27.(10分)△ABC中,AB=AC,点D、E、F分别在BC、AB、AC上,∠EDF=∠B.(1)如图1,求证:DE•CD=DF•BE(2)D为BC中点如图2,连接EF.①求证:ED平分∠BEF;②若四边形AEDF为菱形,求∠BAC的度数及的值.28.(12分)如图,直线AB和抛物线的交点是A(0,﹣3),B(5,9),已知抛物线的顶点D的横坐标是2.(1)求抛物线的解析式及顶点坐标;(2)在x轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不在,请说明理由;(3)在直线AB的下方抛物线上找一点P,连接PA,PB使得△PAB的面积最大,并求出这个最大值.

参考答案一.选择题1.解:根据题意得:﹣3<﹣1<0<1,则最大的数是1,故选:D.2.解:从上面看第一层两个小正方形,第二层两个小正方形,故D正确;故选:D.3.解:0.000035=3.5×10﹣5,故选:C.4.解:A、a与2b不是同类项,不能直接合并,故本选项错误;B、a﹣(1﹣a)=a﹣1+a=2a﹣1,原式计算错误,故本选项错误;C、a3•a2=a5,原式计算正确,故本选项正确;D、a6÷a2=a4,原式计算错误,故本选项错误;故选:C.5.解:让转盘自由转动一次,停止后,指针落在阴影区域内的概率分别是,,,,则指针落在阴影区域内的概率最大的转盘是A.故选:A.6.解:如图,∵在Rt△ABC中,∠ACB=90°,AC=3,AB=5,∴sinB==.故选:A.7.解:y=2(x﹣2)+4=2x.故选:A.8.解:分式方程的最简公分母为(x﹣1)(x+1),方程两边乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6,解得:x=1,经检验x=1是增根,分式方程无解.故选:D.9.解:由题意可得阴影部分面积等于正方形面积的,即是,5个这样的正方形重叠部分(阴影部分)的面积和为×4,n个这样的正方形重叠部分(阴影部分)的面积和为×(n﹣1)=.故选:B.10.解:∵AE=BE=AB,∴△ABE是等边三角形.∴∠EAB=60°,∴的长是=.故选:C.二.填空题(共4小题,满分16分,每小题4分)11.解:6※3==1.故答案为:1.12.解:∵DE∥BC,∴△ABC∽△ADE,∴,∴,∴BC=3,故答案为:313.解:捐款金额的众数是30元;共有数据6+13+20+8+3=50,第25个数和第26个数都是30元,所以中位数是:30元.故答案为30,30.14.解:顶点坐标是(﹣1,﹣3).故答案为:(﹣1,﹣3).三.解答题(共6小题,满分54分)15.解:(1)原式=1+2+1﹣3+3﹣1=6﹣3;(2),由①得:x<1,由②得:x≥﹣,∴不等式组的解集为:﹣≤x<1,,则不等式组的整数解为:﹣1,0.16.解:原式=+•=+=+=.17.解:过点C作AB的垂线,垂足为E,∵CD⊥BD,AB⊥BD,∴四边形CDBE是矩形,∵CD=12m,∠ECB=45°,∴BE=CE=12m,∴AE=CE•tan30°=12×=4(m),∴AB=(4+12)(m).答:建筑物AB的高为19米.18.解:(1)∵三等奖所在扇形的圆心角为90°,∴三等奖所占的百分比为25%,∵三等奖为50人,∴总人数为50÷25%=200人,∴一等奖的学生人数为200×(1﹣20%﹣25%﹣40%)=30人;(2)列表:ABCDAABACADBBABCBDCCACBCDDDADBDC∵共有12种等可能的结果,恰好选中A、B的有2种,∴P(选中A、B)==.19.解:(1)∵一次函数y=﹣x+b的图象与反比例函数y=(k≠0)图象交于A(﹣3,2)、B两点,∴3=﹣×(﹣2)+b,k=﹣2×3=﹣6∴b=,k=﹣6∴一次函数解析式y=﹣x+,反比例函数解析式y=(2)根据题意得:解得:,∴S△ABF=×4×(4+2)=12(3)由图象可得:x<﹣2或0<x<420.(1)证明:连接OB,则∠AOB=2∠ACB=2×45°=90°,∵OA=OB,∴∠OAB=OBA=45°,∵∠AOC=150°,OA=OC,∴∠OCA=∠OAC=15°,∴∠OCB=∠OCA+∠ACB=60°,∴△OBC是等边三角形,∴∠BOC=∠OBC=60°,∴∠CBD=180°﹣∠OBA﹣∠OBC=75°,∵CD是⊙O的切线,∴OC⊥CD,∴∠D=360°﹣∠OBD﹣∠BOC﹣∠OCD=360°﹣(60°+75°)﹣60°﹣90°=75°,∴∠CBD=∠D,∴CB=CD;(2)解:∵∠AOB=2∠ACB=90°,OA=OB=,∴AB==2.四.填空题(共5小题,满分20分,每小题4分)21.解:根据题意得:α+β=1,α3﹣2021α﹣β=α(α2﹣2020)﹣(α+β)=α(α2﹣2020)﹣1,∵α2﹣α﹣2019=0,∴α2﹣2020=α﹣1,把α2﹣2020=α﹣1代入原式得:原式=α(α﹣1)﹣1=α2﹣α﹣1=2019﹣1=2018.22.解:∵3<<4,∴5<+2<6,所以[+1]=5.故答案为:5.23.解:如图所示:,一共有8种可能,只有6,4,3;6,4,4;6,5,2;6,5,3;6,5,4这5种可以组成三角形,故AB、AC、BC能构成三角形的概率是:.故答案为:.24.解:∵过函数y=﹣的图象上A,B两点分别作y轴的垂线,垂足分别为点C,D,∴S△AOC=S△ODB=|k|=2,又∵OC=OD,AC=BD,∴S△AOC=S△ODA=S△ODB=S△OBC=2,∴四边形ABCD的面积为:S△AOC+S△ODA+S△ODB+S△OBC=4×2=8.故答案为:8.25.解:若点P为BC的中点,如图1所示:AB=AC=2,∴AP⊥BC,BP=CP,∴∠APB=90°,∴AP2+BP•PC=AP2+BP2=AB2=4.若BC边上有100个不同的点P1,P2,…,P100,作AD⊥BC于D,则BC=2BD=2CD,如图2所示.根据勾股定理,得APi2=AD2+DPi2=AD2+(BD﹣BPi)2=AD2+BD2﹣2BD•BPi+BPi2,又∵PiB•PiC=PiB•(BC﹣PiB)=2BD•BPi﹣BPi2,∴m1=AD2+BD2=AB2=4,∴m1+m2+…+m100=4×100=400.故答案为:4,400.五.解答题(共3小题,满分30分)26.解:(1)通过观察可见四月份周数y与x的符合一次函数关系式,设这个关系式为:y=kx+b,则,解得:,∴4月份y与x的函数关系式为y=0.2x+1.8;(2)将(1,2.8)(2,2.4)代入y=﹣x2+bx+c.可得:解之:即y=x2x+3.1.(3)4月份此种蔬菜利润可表示为:W1=y﹣m=(0.2x+1.8)﹣(x+1.2),即:W1=﹣0.05x+0.6;由函数解析式可知,四月份的利润随周数的增大而减小,所以应在第一周的利润最大,最大为:W=﹣0.05×1+0.6=0.55(元/千克),5月份此种蔬菜利润可表示为:W2=y﹣m=(x2x+3.1)﹣(﹣x+2),即:W2=x2﹣x+1.1由函数解析式可知,五月份的利润随周数变化符合二次函数且对称轴为:x=﹣=﹣,即在第1至4周的利润随周数的增大而减小,所以应在第一周的利润最大,最大为:W=﹣+1.1=1(元/千克).27.(1)证明:∵△ABC中,AB=AC,∴∠B=∠C.∵∠B+∠BDE+∠DEB=180°,∠BDE+∠EDF+∠FDC=180°,∠EDF=∠B,∴∠FDC=∠DEB,∴△BDE∽△CFD,∴,即DE•CD=DF•BE;(2)解:①由(1)证得△BDE∽△CFD,∴,∵D为BC中点,∴BD=CD,∴=,∵∠B=∠EDF,∴△BDE~△DFE,∴∠BED=∠DEF,∴ED平分∠BEF;②∵四边形AEDF为菱形,∴∠AEF=∠DEF,∵∠BED=∠DEF,∴∠AEF=60°,∵AE=AF,∴∠BAC=60°,∵∠BAC=60°,∴△ABC是等边三角形,∴∠B=60°,∴△BED是等边三角形,∴BE=DE,∵AE=DE,∴AE=AB,∴=.28.解:(1)抛物线的顶点D的横坐标是2,则x=﹣=2…①,抛物线过是A(0,﹣3),则:函数的表达式为:y=ax2+bx﹣3,把B点坐标代入上式得:9=25a+5b﹣3…②,联立①、②解得:a=,b=﹣,c=﹣3,∴抛物线的解析式为:y=x2﹣x﹣3,当x=2时,y=﹣,即顶点D的坐标为(2,﹣);(2)A(0,﹣3),B(5,9),则AB=13,①当AB=AC时,设点C坐标(m,0),则:(m)2+(﹣3)2=132,解得:m=±4,即点C坐标为:(4,0)或(﹣4,0);②当AB=BC时,设点C坐标(m,0),则:(5﹣m)2+92=132,解得:m=5,即:点C坐标为(5,0)或(5﹣2,0),③当AC=BC时,设点C坐标(m,0),则:点C为AB的垂直平分线于x轴的交点,则点C坐标为(,0),故:存在,点C的坐标为:(4,0)或(﹣4,0)或(5,0)或(5﹣2,0)或(,0);(3)过点P作y轴的平行线交AB于点H,设:AB所在的直线过点A(0,﹣3),则设直线AB的表达式为y=kx﹣3,把点B坐标代入上式,9=5k﹣3,则k=,故函数的表达式为:y=x﹣3,设:点P坐标为(m,m2﹣m﹣3),则点H坐标为(m,m﹣3),S△PAB=•PH•xB=(﹣m2+12m),当m=2.5时,S△PAB取得最大值为:,答:△PAB的面积最大值为.

九年级上册数学期末考试题(含答案)一、选择题(每题2分,共24分)下列各题的四个选项中,只有一个答案是正确的,请将正确答案的代号填涂在机读卡上.1.(2分)有一实物如图,那么它的主视图是()A. B. C. D.2.(2分)关于x的方程x2﹣2x﹣2=0的根的情况是()A.有两个不等实根 B.有两个相等实根 C.没有实数根 D.无法判断根的情况3.(2分)若函数y=(2m﹣1)x是反比例函数,则m的值是()A.﹣1或1 B.小于的任意实数 C.﹣1 D.14.(2分)下列四边形中,对角线一定相等的是()A.菱形 B.矩形 C.平行四边形 D.梯形5.(2分)下列式子从左到右变形一定正确的是()A.= B.= C.= D.=6.(2分)关于x的一元二次方程2x(x+1)=(x+1)的根是()A.x=0 B.x=﹣1 C.x1=0,x2=﹣1 D.7.(2分)下列说法中的错误的是()A.一组邻边相等的矩形是正方形 B.一组邻边相等的平行四边形是菱形 C.一组对边相等且有一个角是直角的四边形是矩形 D.一组对边平行且相等的四边形是平行四边形8.(2分)某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊()A.200只 B.400只 C.800只 D.1000只9.(2分)如图,在△ABC中,已知∠ADE=∠B,则下列等式成立的是()A. B. C. D.10.(2分)在同一直角坐标系中,一次函数y=kx﹣k与反比例函数y=(k≠0)的图象大致是()A. B. C. D.11.(2分)若m,n满足m2+5m﹣3=0,n2+5n﹣3=0,且m≠n.则的值为()A. B.﹣ C.﹣ D.12.(2分)两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是()A.①②③ B.②③④ C.①②④ D.①③④二、填空题(每小题3分,共15分)将答案填在答题卡相应的横线上.13.(3分)菱形的两条对角线长分别是6和8,则菱形的边长为.14.(3分)对于实数a,b,定义运算“※”:a※b=a2+b,则方程x※(x﹣2)=0的根为.15.(3分)已知A(x1,y1),B(x2,y2)都在反比例函数y=的图象上.若x1x2=﹣4,则y1y2的值为.16.(3分)将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB=,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处,则BC的长为.17.(3分)已知方程x2﹣2019x+1=0的一个根为a,则a+的值为.三、解答题(本大题共7个小题,满分61分)18.(7分)先化简,再求值:÷(+1),其中x满足x2﹣x﹣2=0.19.(8分)某校对A《唐诗》、B《宋词》、C《蒙山童韵》、D其它,这四类著作开展“最受欢迎的传统文化著作”调查,随机调查了若干名学生(每名学生必选且只能选这四类著作中的一种)并将得到的信息绘制了下面两幅不完整的统计图:(1)求一共调查了多少名学生;(2)请将条形统计图补充完整;(3)该校语文老师想从这四类著作中随机选取两类作为学生寒假必读书籍,请用树状图或列表的方法求恰好选中《宋词》和《蒙山童韵》的概率.20.(8分)如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.21.(9分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售量,增加利润,尽快减少库存,商场决定采取适当的降价措施,经市场调查发现,如果每件衬衫降价1元,那么商场平均每天可多售出2件,若商场想平均每天盈利达1200元,那么买件衬衫应降价多少元?22.(9分)如图,阳光下,小亮的身高如图中线段AB所示,他在地面上的影子如图中线段BC所示,线段DE表示旗杆的高,线段FG表示一堵高墙.(1)请你在图中画出旗杆在同一时刻阳光照射下形成的影子;(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗杆的高DE=15m,旗杆与高墙的距离EG23.(10分)如图,在正方形ABCD中,点M是边BC上的一点(不与B、C重合),点N在CD的延长线上,且满足∠MAN=90°,连接MN、AC,MN与边AD交于点E.(1)求证:AM=AN;(2)如果∠CAD=2∠NAD,求证:AN2=AE•AC.24.(10分)如图,直线y=﹣x+b与反比例函数y=的图象相交于A(1,4),B两点,延长AO交反比例函数图象于点C,连接OB.(1)求k和b的值;(2)直接写出一次函数值小于反比例函数值的自变量x的取值范围;(3)在y轴上是否存在一点P,使S△PAC=S△AOB?若存在请求出点P坐标,若不存在请说明理由.

2018-2019学年四川省雅安市九年级(上)期末数学试卷参考答案与试题解析一、选择题(每题2分,共24分)下列各题的四个选项中,只有一个答案是正确的,请将正确答案的代号填涂在机读卡上.1.【解答】解:正面看,它是中间小两头大的一个图形,里面有两条虚线,表示看不到的棱.故选B.2.【解答】解:∵△=(﹣2)2﹣4×1×(﹣2)=12>0,∴方程有两个不相等的实数根.故选:A.3.【解答】解:依题意得:m2﹣2=﹣1且2m﹣1≠0解得m=±1.故选:A.4.【解答】解:菱形的对角线不一定相等,A错误;矩形的对角线一定相等,B正确;平行四边形的对角线不一定相等,C错误;梯形的对角线不一定相等,D错误;故选:B.5.【解答】解:A、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故A错误;B、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,错误;C、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故C错误;D、分子分母都除以a,分式的值不变,故D正确;故选:D.6.【解答】解:2x(x+1)=(x+1),2x(x+1)﹣(x+1)=0,(2x﹣1)(x+1)=0,则方程的解是:x1=,x2=﹣1.故选:D.7.【解答】解:A、一组邻边相等的矩形是正方形,此说法正确,不符合题目的要求;B、一组邻边相等的平行四边形是菱形,此说法正确,不符合题目的要求;C、一组对边相等且有一个角是直角的四边形不一定是矩形,此说法错误,符合题目的要求;D、一组对边平行且相等的四边形是平行四边形,此说法正确,不符合题目的要求;故选:C.8.【解答】解:20÷=400(只).故选:B.9.【解答】解:∵∠A=∠A,∠ADE=∠B,∴△AED∽△ACB,∴=.故选:A.10.【解答】解:(1)当k>0时,一次函数y=kx﹣k经过一、三、四象限,反比例函数经过一、三象限,如图所示:(2)当k<0时,一次函数y=kx﹣k经过一、二、四象限,反比例函数经过二、四象限.如图所示:故选:A.11.【解答】解:∵m,n满足m2+5m﹣3=0,n2+5n﹣3=0,且m≠n∴m、n可看作方程x2+5x﹣3=0,∴m+n=﹣5,mn=﹣3,所以===.故选:D.12.【解答】解:由反比例函数系数k的几何意义判断各结论:①△ODB与△OCA的面积相等;正确,由于A、B在同一反比例函数图象上,则两三角形面积相等,都为;②四边形PAOB的面积不会发生变化;正确,由于矩形OCPD、三角形ODB、三角形OCA为定值,则四边形PAOB的面积不会发生变化;③PA与PB始终相等;错误,不一定,只有当四边形OCPD为正方形时满足PA=PB;④连接OP,点A是PC的中点,则△OAP和△OAC的面积相等,∵△ODP的面积=△OCP的面积=,△ODB与△OCA的面积相等,∴△OBP与△OAP的面积相等,∴△OBD和△OBP面积相等,∴点B一定是PD的中点.故一定正确的是①②④.故选:C.二、填空题(每小题3分,共15分)将答案填在答题卡相应的横线上.13.【解答】解:因为菱形的对角线互相垂直平分,根据勾股定理可得菱形的边长为=5.故答案为:5.14.【解答】解:根据题意,得:x2+x﹣2=0,则(x﹣1)(x+2)=0,∴x﹣1=0或x+2=0,解得:x1=1,x2=﹣2,故答案为:x1=1,x2=﹣2.15.【解答】解:根据题意得y1=,y2=,所以y1•y2=•,===﹣9.故答案为﹣9.16.【解答】解:∵△ABE和△AB1E对折,∴△ABE≌△AB1E,∴BE=B1E,∠B=∠AB1E=90°,∵∠BAE=30°,,∴BE=1,∵△AB1C1≌△AB1E∴AC1=AE,又∵∠AEC1=∠AEB=60°∴AEC1是等边三角形,EC1=AE=2∵EC=EC1=2,∴BC=2+1=3.17.【解答】解:∵a是方程x2﹣2019x+1=0的一个根,∴a2﹣2019a+1=0∴a2=2019a﹣1,a2+1=2019∴a+=a+=a+===2019,故答案为:2019.三、解答题(本大题共7个小题,满分61分)18.【解答】解:原式=÷=•=.∵x2﹣x﹣2=0,∴x=2或x=﹣1(不合题意).∴原式==.19.【解答】解:(1)本次一共调查的学生数是:15÷30%=50(人);(2)B对应的人数为:50﹣16﹣15﹣7=12人,补图如下:(3)根据题意画树状图如下:∵共有12种等可能的结果,恰好选中B、C的有2种,∴P(选中B、C)==.20.【解答】(1)证明:由尺规作∠BAF的角平分线的过程可得AB=AF,∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=FA,∴四边形ABEF为平行四边形,∵AB=AF,∴四边形ABEF为菱形;(2)解:∵四边形ABEF为菱形,∴AE⊥BF,BO=FB=3,AE=2AO,在Rt△AOB中,AO==4,∴AE=2AO=8.21.【解答】解:设买件衬衫应降价x元,由题意得:(40﹣x)(20+2x)=1200,即2x2﹣60x+400=0,∴x2﹣30x+200=0,∴(x﹣10)(x﹣20)=0,解得:x=10或x=20为了减少库存,所以x=20.故买件衬衫应应降价20元.22.【解答】解:(1)如图:线段MG和GE就表示旗杆在阳光下形成的影子.(2)过M作MN⊥DE于N,设旗杆的影子落在墙上的长度为x,由题意得:△DMN∽△ACB,∴又∵AB=1.6,BC=2.4,DN=DE﹣NE=15﹣xMN=EG=16∴解得:x=,答:旗杆的影子落在墙上的长度为米.23.【解答】证明(1)∵四边形ABCD是正方形,∴AB=AD,∠CAD=45°=∠ACB,∠BAD=90°=∠CDA=∠B,∴∠BAM+∠MAD=90°,∵∠MAN=90°,∴∠MAD+∠DAN=90°,∴∠BAM=∠DAN,且AD=AB,∠ABC=∠ADN=90°,∴△ABM≌△ADN(ASA)∴AM=AN,(2)∵AM=AN,∠MAN=90°∴∠MNA=45°,∵∠CAD=2∠NAD=45°,∴∠NAD=22.5°∴∠CAM=∠MAN﹣∠CAD﹣∠NAD=22.5°∴∠CAM=∠NAD,∠ACB=∠MNA=45°,∴△AMC∽△AEN∴,且AN=AM,∴AN2=AE×AC24.【解答】解:(1)将A(1,4)分别代入y=﹣x+b和得:4=﹣1+b,4=,解得:b=5,k=4;(2)一次函数值小于反比例函数值的自变量x的取值范围为:x>4或0<x<1,(3)过A作AN⊥x轴,过B作BM⊥x轴,由(1)知,b=5,k=4,∴直线的表达式为:y=﹣x+5,反比例函数的表达式为:由,解得:x=4,或x=1,∴B(4,1),∴S△AOB=1×4+(1+4)×(4﹣1)÷2=,∵S△PAC=,∴,过A作AE⊥y轴,过C作CD⊥y轴,设P(0,t),∴S△PAC=OP•CD+OP•AE=OP(CD+AE)=|t|=3,解得:t=3,t=﹣3,∴P(0,3)或P(0,﹣3).

最新九年级(上)数学期末考试题(含答案)一.选择题(满分30分,每小题3分)1.已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数是()A.45° B.60° C.75° D.90°2.若半径为5cm的一段弧长等于半径为2cm的圆的周长,则这段弧所对的圆心角为()A.18° B.36° C.72° D.144°3.下列成语中描述的事件必然发生的是()A.水中捞月 B.瓮中捉鳖 C.守株待兔 D.拔苗助长4.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A. B. C. D.5.如图,在▱ABCD中,F是AD延长线上一点,连接BF交DC于点E,则图中相似三角形共有()对.A.2对 B.3对 C.4对 D.5对6.如图,在△ABC中,点D为AB上一点,过点D作BC的平行线交AC于点E,过点E作AB的平行线交BC于点F,连接CD,交EF于点K,则下列说法正确的是()A. B. C. D.7.点M(a,2a)在反比例函数y=的图象上,那么a的值是()A.4 B.﹣4 C.2 D.±28.方程x2+2x+1=的正数根的个数为()A.0 B.1 C.2 D.39.如图,两个反比例函数y=和y=在第一象限内的图象分别是C1和C2,设点P在C1上,PA⊥x轴于点A,交C2于点B,则△POB的面积为()A.1 B.2 C.4 D.无法计算10.如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.给出以下结论:①DG=DF;②四边形EFDG是菱形;③EG2=GF×AF;④当AG=6,EG=2时,BE的长为,其中正确的结论个数是()A.1 B.2 C.3 D.4二.填空题(满分24分,每小题3分)11.如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需个五边形.12.如果两个相似三角形对应边上的高的比为1:4,那么这两个三角形的周长比是.13.下表记录了某种幼树在一定条件下移植成活情况移植总数n400150035007000900014000成活数m325133632036335807312628成活的频率(精确到0.01)0.8130.8910.9150.9050.8970.902由此估计这种幼树在此条件下移植成活的概率约是(精确到0.1).14.已知圆锥的底面半径为3,母线长为6,则此圆锥侧面展开图的圆心角是.15.如图,线段AB端点B的坐标分别为B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点D的坐标为.16.如图所示,在平面直角坐标系中有一格点三角形,该三角形的三个顶点为:A(1,1)、B(﹣3,1)、C(﹣3.﹣1)(1)若△ABC的外接圆的圆心为P,则点P的坐标为.(2)如图所示,在11×8的网格图内,以坐标原点O点为位似中心,将△ABC按相似比2:1放大,A、B、C的对应点分别为A′、B′、C′,得到△A′B′C′,在图中画出△A′B′C′;若将△A′B′C′沿x轴方向平移,需平移单位长度,能使得B′C′所在的直线与⊙P相切.17.在正方形ABCD中,∠CBF=25°,BF交对角线AC于E点,则∠AED=.18.在如图所示的正方形网格中画出以AB为斜边的Rt△ABC.要求:顶点在格点上,且各边的长均为无理数.三.解答题(共6小题,满分46分)19.(5分)环保局对某企业排污情况进行检测,结果显示,所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L,环保局要求该企业立即整改,在15天以内(含15天)排污达标,整改过程中,所排污水中硫化物的浓度γ(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度γ与时间x成反比例关系(1)求整改过程中硫化物的浓度γ与时间x的函数表达式(要求标注自变量x的取值范围)(2)该企业所排污水中硫化物的浓度,能否在15天以内(含15天)排污达标?为什么?20.(6分)把一副扑克牌中的三张黑桃牌(它们的正面数字分别为3、4、5)洗匀后正面朝下放在桌面上.小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽取一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽取一张牌,记下牌面数字.当两张牌的牌面数字相同时,小王赢;当两张牌的牌面数字不同时,小李赢.现请你分析游戏规则对双方是否公平,并说明理由.21.(7分)如图,小明在A时测得某树的影长DE为2m,B时又测得该树的影长EF为8m,若两次日照的光线互相垂直,求树的高度CE是多少?22.(8分)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且=.(1)求证:△ADF∽△ACG;(2)若=,求的值.23.(10分)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,求BD的长.24.(10分)如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5).求:(1)b和k的值;(2)△OAB的面积.

参考答案一.选择1.已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数是()A.45° B.60° C.75° D.90°【分析】连接OB、OC,首先根据正方形的性质,得∠BOC=90°,再根据圆周角定理,得∠BPC=45°.解:如图,连接OB、OC,则∠BOC=90°,根据圆周角定理,得:∠BPC=∠BOC=45°.故选:A.【点评】本题主要考查了正方形的性质和圆周角定理的应用.这里注意:根据90°的圆周角所对的弦是直径,知正方形对角线的交点即为其外接圆的圆心.2.若半径为5cm的一段弧长等于半径为2cm的圆的周长,则这段弧所对的圆心角为()A.18° B.36° C.72° D.144°【分析】利用圆的周长公式求得该弧的长度,然后由弧长公式进行计算.解:依题意得2π×2=,解得n=144.故选:D.【点评】本题考查了弧长的计算.此题的已知条件是半径为2的圆的周长=半径为5的弧的弧长.3.下列成语中描述的事件必然发生的是()A.水中捞月 B.瓮中捉鳖 C.守株待兔 D.拔苗助长【分析】分别根据确定事件与随机事件的定义对各选项进行逐一分析即可.解:A、水中捞月是不可能事件,故本选项错误;B、瓮中捉鳖是一定能发生的事件,属必然事件,故本选项正确;C、守株待兔是可能发生也可能不发生的事件,是随机事件,故本选项错误;D、拔苗助长是一定不会发生的事件,是不可能事件,故本选项错误.故选:B.【点评】本题考查的是随机事件,熟知在一定条件下,可能发生也可能不发生的事件,称为随机事件是解答此题的关键.4.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A. B. C. D.【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为,故选:A.【点评】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.5.如图,在▱ABCD中,F是AD延长线上一点,连接BF交DC于点E,则图中相似三角形共有()对.A.2对 B.3对 C.4对 D.5对【分析】根据已知及相似三角形的判定方法进行分析,从而得到图中的相似三角形的对数.解:∵ABCD是平行四边形,∴AD∥BC,DC∥AB,∴△ABF∽△DEF∽△CEB,∴相似三角形共有三对.故选:B.【点评】本题主要考查了平行四边形的性质及相似三角形的判定,正确掌握相似三角形的判定是解题的关键.6.如图,在△ABC中,点D为AB上一点,过点D作BC的平行线交AC于点E,过点E作AB的平行线交BC于点F,连接CD,交EF于点K,则下列说法正确的是()A. B. C. D.【分析】利用相似三角形的判定和性质以及平行线分线段成比例定理证明即可;解:∵DE∥CF,∴△DEK∽△CFK,∴=,∵EK∥AD,∴=,∴=,故选:C.【点评】本题考查了相似三角形的判定和性质,平行线分线段成比例定理,解题的关键是熟练掌握基本知识,属于中考常考题型.7.点M(a,2a)在反比例函数y=的图象上,那么a的值是()A.4 B.﹣4 C.2 D.±2【分析】将点M坐标代入反比例函数解析式得出关于a的方程,解之可得.解:∵点M(a,2a)在反比例函数y=的图象上.∴2a=.∴解得:a=±2,故选:D.【点评】此题考查了反比例函数图象上点的坐标特征,图象上点的坐标适合解析式.8.方程x2+2x+1=的正数根的个数为()A.0 B.1 C.2 D.3【分析】求方程x2+2x+1=的解,可以理解为:二次函数y=x2+2x+1与反比例函数y=的图象交点的横坐标.解:二次函数y=x2+2x+1=(x+1)2的图象过点(0,1),且在第一、二象限内,反比例函数y=的图象在第一、三象限,∴这两个函数只在第一象限有一个交点.即方程x2+2x+1=的正数根的个数为1.故选:B.【点评】本题利用了二次函数的图象与反比例函数图象来确定方程的交点的个数.9.如图,两个反比例函数y=和y=在第一象限内的图象分别是C1和C2,设点P在C1上,PA⊥x轴于点A,交C2于点B,则△POB的面积为()A.1 B.2 C.4 D.无法计算【分析】根据反比例函数y=(k≠0)系数k的几何意义得到S△POA=×4=2,S△BOA=×2=1,然后利用S△POB=S△POA﹣S△BOA进行计算即可.解:∵PA⊥x轴于点A,交C2于点B,∴S△POA=×4=2,S△BOA=×2=1,∴S△POB=2﹣1=1.故选:A.【点评】本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.10.如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.给出以下结论:①DG=DF;②四边形EFDG是菱形;③EG2=GF×AF;④当AG=6,EG=2时,BE的长为,其中正确的结论个数是()A.1 B.2 C.3 D.4【分析】先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF,连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明DF2=FO•AF,于是可得到GE、AF、FG的数量关系,过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.解:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.故①正确;∴DG=GE=DF=EF.∴四边形EFDG为菱形,故②正确;如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DFA,∴△DOF∽△ADF.∴=,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.故③正确;如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△FAD.∴=,即=,∴GH=,∴BE=AD﹣GH=4﹣=.故④正确.故选:D.【点评】本题主要考查的是四边形与三角形的综合应用,解答本题主要应用了矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到DF2=FO•AF是解题答问题②的关键,依据相似三角形的性质求得GH的长是解答问题④的关键.二.填空题(共8小题,满分24分,每小题3分)11.如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需7个五边形.【分析】延长正五边形的相邻两边交于圆心,求得该圆心角的度数后,用360°除以该圆心角的度数即可得到正五边形的个数,减去3后即可得到本题答案.解:延长正五边形的相邻两边,交于圆心,∵正五边形的外角等于360°÷5=72°,∴延长正五边形的相邻两边围成的角的度数为:180°﹣72°﹣72°=36°,∴360°÷36°=10,∴排成圆环需要10个正五边形,故排成圆环还需7个五边形.故答案为:7.【点评】本题考查了正五边形与圆的有关运算,属于层次较低的题目,解题的关键是正确地构造圆心角.12.如果两个相似三角形对应边上的高的比为1:4,那么这两个三角形的周长比是1:4.【分析】根据相似三角形周长的比、两个相似三角形对应边上的高的比等于相似比解答即可.解:∵两个相似三角形对应边上的高的比为1:4,∴这两个三角形的相似比为1:4,∴两个相似三角形的周长比为1:4;故答案为:1:4【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比是解题的关键.13.下表记录了某种幼树在一定条件下移植成活情况移植总数n400150035007000900014000成活数m325133632036335807312628成活的频率(精确到0.01)0.8130.8910.9150.9050.8970.902由此估计这种幼树在此条件下移植成活的概率约是0.9(精确到0.1).【分析】概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.解:概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.9.故答案为:0.9.【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.14.已知圆锥的底面半径为3,母线长为6,则此圆锥侧面展开图的圆心角是180°.【分析】易得圆锥的底面周长,就是圆锥的侧面展开图的弧长,利用弧长公式可得圆锥侧面展开图的角度,把相关数值代入即可求解.解:∵圆锥底面半径是3,∴圆锥的底面周长为6π,设圆锥的侧面展开的扇形圆心角为n°,=6π,解得n=180.故答案为180°.【点评】考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于圆锥的底面周长.15.如图,线段AB端点B的坐标分别为B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点D的坐标为(4,1).【分析】利用位似图形的性质,结合两图形的位似比进而得出D点坐标.解:∵线段AB端点B的坐标分别为B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点D的横坐标和纵坐标都变为B点的一半,∴端点D的坐标为:(4,1).故答案为:(4,1).【点评】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.16.如图所示,在平面直角坐标系中有一格点三角形,该三角形的三个顶点为:A(1,1)、B(﹣3,1)、C(﹣3.﹣1)(1)若△ABC的外接圆的圆心为P,则点P的坐标为(﹣1,0).(2)如图所示,在11×8的网格图内,以坐标原点O点为位似中心,将△ABC按相似比2:1放大,A、B、C的对应点分别为A′、B′、C′,得到△A′B′C′,在图中画出△A′B′C′;若将△A′B′C′沿x轴方向平移,需平移5单位长度,能使得B′C′所在的直线与⊙P相切.【分析】(1)观察图象可知,△ABC是直角三角形,推出斜边AC的中点P,是△ABC的外接圆的圆心;(2)延长OA到A′,使得AA′=OA,延长OB到B′,使得BB′=OB,延长CO到C′,使得CC′=OC,连接A′B′,B′C′,C′A′,△A′B′C′即为所求;解:(1)观察图象可知,△ABC是直角三角形,∴斜边AC的中点P,是△ABC的外接圆的圆心,∵A(1,1),C(﹣3.﹣1),∴P(﹣1,0).故答案为(﹣1,0).(2)如图,△A′B′C′即为所求;∵AC==2,∴△ABC的外接圆的半径为,∵点P到直线B′C′的距离为5,∴将△A′B′C′沿x轴方向平移5﹣或5+个单位能使得B′C′所在的直线与⊙P相切.故答案为5±.【点评】本题考查坐标与图形的变化﹣平移,位似变换,切线的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.17.在正方形ABCD中,∠CBF=25°,BF交对角线AC于E点,则∠AED=70°.【分析】根据正方形是轴对称图形,利用轴对称图形的性质即可解决问题;解:∵四边形ABCD是正方形,∴直线AC是对称轴,∠ACB=45°,∴∠AED=∠AEB,∵∠AEB=∠EBC+∠ACB=25°+45°=70°,∴∠AED=70°,故答案为70°【点评】本题考查正方形的性质、轴对称图形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.在如图所示的正方形网格中画出以AB为斜边的Rt△ABC.要求:顶点在格点上,且各边的长均为无理数.【分析】根据勾股定理的逆定理,结合网格和无理数的定义作图可得.解:如图所示,△ABC和△ABC′即为所求.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握勾股定理及其逆定理,无理数的概念.三.解答题(共6小题,满分46分)19.(5分)环保局对某企业排污情况进行检测,结果显示,所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L,环保局要求该企业立即整改,在15天以内(含15天)排污达标,整改过程中,所排污水中硫化物的浓度γ(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度γ与时间x成反比例关系(1)求整改过程中硫化物的浓度γ与时间x的函数表达式(要求标注自变量x的取值范围)(2)该企业所排污水中硫化物的浓度,能否在15天以内(含15天)排污达标?为什么?【分析】(1)分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,10),B(3,4)代入得出方程组,解方程组即可;②当x>3时,设y=,把(3,4)代入求出m的值即可;(2)令y==1,得出x=12,3<12<15,即可得出结论.解:(1)分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,10),B(3,4)代入得:,解得:,∴y=﹣2x+10;②当x>3时,设y=,把(3,4)代入得:m=3×4=12,∴y=;综上所述:当0≤x≤3时,y=﹣2x+10;当x>3时,y=;(2)能;理由如下:令y==1,则x=12,3<12<15,故能在15天以内不超过最高允许的1.0mg/L.【点评】本题考查了一次函数的应用、反比例函数的应用;根据题意得出函数关系式是解决问题的关键.20.(6分)把一副扑克牌中的三张黑桃牌(它们的正面数字分别为3、4、5)洗匀后正面朝下放在桌面上.小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽取一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽取一张牌,记下牌面数字.当两张牌的牌面数字相同时,小王赢;当两张牌的牌面数字不同时,小李赢.现请你分析游戏规则对双方是否公平,并说明理由.【分析】该游戏不公平,理由为:列表得出所有等可能的情况数,找出数字相同的情况数,分别求出两人获胜的概率,比较即可.解:该游戏不公平,理由为:列表如下:3453(3,3)(4,3)(5,3)4(3,4)(4,4)(5,4)5(3,5)(4,5)(5,5)两人各抽取一张牌,总共有9种情况,分别为:(3,3);(3,4);(3,5);(4,3);(4,4);(4,5);(5,3),(5,4),(5,5),其中数字相同的有3种情况,分别为(3,3);(4,4);(5,5),∴P(小王赢)==,P(小李赢)==,∵P(小王赢)<P(小李赢),∴游戏规则不公平.【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.21.(7分)如图,小明在A时测得某树的影长DE为2m,B时又测得该树的影长EF为8m,若两次日照的光线互相垂直,求树的高度CE是多少?【分析】根据题意,Rt△EDC∽Rt△EFC,即EC2=ED•FE,代入数据可得答案.解:在Rt△CDF中,树高为CE,且∠DCF=90°,ED=2m,FE=8,易得:Rt△EDC∽Rt△EFC,∴=;即EC2=ED•FE,则EC2=2×8解得:EC=4,∴树的高度CE是4m.【点评】本题考查相似三角形的应用,关键是通过投影的知识结合三角形的相似,求解高的大小;是平行投影性质在实际生活中的应用.22.(8分)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且=.(1)求证:△ADF∽△ACG;(2)若=,求的值.【分析】(1)由∠AED=∠B、∠DAE=∠CAB利用三角形内角和定理可得出∠ADF=∠C,结合=,即可证出△ADF∽△ACG;(2)根据相似三角形的性质可得出=,由=可得出=,再结合FG=AG﹣AF即可求出的值.(1)证明:∵∠AED=∠B,∠DAE=∠CAB,∴∠ADF=∠C.又∵=,∴△ADF∽△ACG.(2)∵△ADF∽△ACG,∴=.∵=,∴=,∴==1.【点评】本题考查了相似三角形的判定与性质以及三角形内角和定理,熟记相似三角形的判定定理与性质定理是解题的关键.23.(10分)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,求BD的长.【分析】先利用勾股定理计算出AB,再在Rt△BDE中,求出BD即可;解:∵∠C=90°,AC=4,BC=3,∴AB=5,∵△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=AC=4,DE=BC=3,∴BE=AB﹣AE=5﹣4=1,在Rt△DBE中,BD==.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.24.(10分)如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5).求:(1)b和k的值;(2)△OAB的面积.【分析】(1)由直线y=x+b与双曲线y=相交于A,B两点,A(2,5),即可得到结论;(2)过A作AD⊥y轴于D,BE⊥y轴于E根据y=x+3,y=,得到B(﹣5,﹣2),C(﹣3,0),求出OC=3,然后根据三角形的面积公式即可得到结论.解:(1)∵直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5),∴5=2+b,5=.解得:b=3,k=10.(2)如图,过A作AD⊥y轴于D,过B作BE⊥y轴于E,∴AD=2.∵b=3,k=10,∴y=x+3,y=.由得:或,∴B点坐标为(﹣5,﹣2).∴BE=5.设直线y=x+3与y轴交于点C.∴C点坐标为(0,3).∴OC=3.∴S△AOC=OC•AD=×3×2=3,S△BOC=OC•BE=×3×5=.∴S△AOB=S△AOC+S△BOC=.【点评】本题考查了反比例函数与一次函数的交点,三角形面积的计算,正确的识别图形是解题的关键.

人教版数学九年级上册期末考试试题(含答案)一、填空题(每小题3分,共30分)1.袋中装有一个红球和二个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到红球的概率是.2.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根0,则a值为.3.抛物线y=4x2﹣3x与y轴的交点坐标是.4.已知a2﹣5a﹣1=0,则5(1+2a)﹣2a25.如果点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,那么m的值为.6.如图,等腰直角△ABC中,AC=BC,∠ACB=90°,点O分斜边AB为BO:OA=1:,将△BOC绕C点顺时针方向旋转到△AQC的位置,则∠AQC=.7.如图,在平行四边形ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若弧EF的长为,则AB=.8.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=2,O为AC中点,若点D在直线BC上运动,连接OE,则在点D运动过程中,线段OE的最小值是为.9.摄影兴趣小组的学生,将自己拍摄的照片向本组其他成员各赠送一张,全组共互赠了182张,若全组有x名学生,则根据题意列出的方程是.10.如图,在12×6的网格图中(每个小正方形的边长均为1个单位),⊙A的半径为1,⊙B的半径为2,要使⊙A与静止的⊙B外切,那么⊙A由图示位置需向右至少平移个单位.二、选择题(每小题3分,共30分)11.下列一元二次方程中没有实数根的方程是()A.(x﹣1)2=1 B.x2+2x﹣10=0 C.x2+4=7 D.x2+x12.已知如图①所示的四张牌,若将其中一张牌旋转180°后得到图②,则旋转的牌是()A. B. C. D.13.在同一平面直角坐标系内,将函数y=2x2+4x﹣3的图象向右平移2个单位,再向下平移1个单位得到图象的顶点坐标是()A.(﹣3,﹣6) B.(1,﹣4) C.(1,﹣6) D.(﹣3,﹣4)14.如图,O为线段AB的中点,AB=4cm,P1、P2、P3、P4到点O的距离分别是1cm、2cm、2.8cm、1.7cmA.P1 B.P2 C.P3 D.P15.如图,圆上有A、B、C三点,直线l与圆相切于点A,CD平分∠ACB,且与l交于点D,若=80°,=60°,则∠ADC的度数为()A.80° B.85° C.90° D.95°16.有三张正面分别写有数字﹣2,1,3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后把这张放回去,再从三张卡片中随机抽一张,以其正面的数字作为b的值,则点(a,b)在第一象限的概率为()A. B. C. D.17.在同一直角坐标系中,函数y=mx+m和函数y=mx2+2x+2(m是常数,且m≠0)的图象可能是()A. B. C. D.18.若x1和x2为一元二次方程x2+2x﹣1=0的两个根.则x12x2+x1x22值为()A.4 B.2 C.4 D.319.如图,向一个半径为3m,容积为36m3的球形容器内注水,则能够反映容器内水的体积yA. B. C. D.20.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<xA.2个 B.3个 C.4个 D.5个三、解答题(共60分)21.(6分)用适当的方法解下列方程.(1)3x(x+3)=2(x+3)(2)2x2﹣4x﹣3=0.22.(6分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC绕O点逆时针旋转90°得到△A1B1C1,请画出△A1B1C(2)在x轴上求作一点P,使△PA1C1的周长最小,并直接写出P23.(6分)已知抛物线y=﹣x2+bx+c与直线y=﹣x+m相交于第一象限内不同的两点A(4,n),B(1,4),(1)求此抛物线的解析式.(2)抛物线上是否存点P,使直线OP将线段AB平分?若存在直接求出P点坐标;若不存在说明理由.24.(7分)家庭过期药品属于“国家危险废物”处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查.设计调查方式:(1)有下列选取样本的方法①在市中心某个居民区以家庭为单位随机抽取②在全市医务工作者中以家庭为单位随机抽取③在全市常住人口中以家庭为单位随机抽取.其中最合理的一种是.(只需填上正确答案的序号)收集整理数据:本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如下表:处理方式A继续使用B直接丢弃C送回收点D搁置家中E卖给药贩F直接焚烧所占比例8%51%10%20%6%5%描述数据:(2)此次抽样的样本数为1000户家庭,请你绘制条形统计图描述各种处理过期药品方式的家庭数;分析数据:(3)根据调查数据,你认为该市市民家庭处理过期药品最常见的方式是什么?说明你的理由;(4)家庭过期药品的正确处理方式是送回收点,若该市有500万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.25.(7分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是事件;(可能,必然,不可能)(2)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.26.(8分)如图,已知正方形ABCD的边长为,连接AC、BD交于点O,CE平分∠ACD交BD于点E,(1)求DE的长;(2)过点EF作EF⊥CE,交AB于点F,求BF的长;(3)过点E作EG⊥CE,交CD于点G,求DG的长.27.(10分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?28.(10分)如图,矩形OABC在平面直角坐标系中,若x2﹣2x+2=0的两根是x1、x2,且OC=x1+x2,OA=x1x2(1)求B点的坐标.(2)把△ABC沿AC对折,点B落在点B′处,线段AB′与x轴交于点D,求直线BD的解析式.(3)在平面上是否存在点P,使D、C、B、P四点形成的四边形为平形四边形?若存在,请直接写出P点坐标;若不存在,请说明理由.

2018-2019学年黑龙江省牡丹江市管理局九年级(上)期末数学试卷参考答案与试题解析一、填空题(每小题3分,共30分)1.袋中装有一个红球和二个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到红球的概率是.【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到红球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【解答】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次都摸到红球的概率是,故答案为:.【点评】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.2.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根0,则a值为﹣1.【分析】根据一元二次方程的定义和一元二次方程的解的定义得出a﹣1≠0,a2﹣1=0,求出a的值即可【解答】解:把x=0代入方程得:a2﹣1=0,解得:a=±1,∵(a﹣1)x2+x+a2﹣1=0是关于x的一元二次方程,∴a﹣1≠0,即a≠1,∴a的值是﹣1.故答案为:﹣1.【点评】本题考查了对一元二次方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出a﹣1≠0且a2﹣1=0,题目比较好,但是一道比较容易出错的题.3.抛物线y=4x2﹣3x与y轴的交点坐标是(0,0).【分析】令x=0可求得y=0,可求得答案.【解答】解:在y=4x2﹣3x中,令x=0可得y=0,∴抛物线与y轴的交点坐标为(0,0),故答案为:(0,0).【点评】本题主要考查二次函数的图象上点的坐标特征,掌握求函数图象与坐标轴的交点的方法是解题的关键.4.已知a2﹣5a﹣1=0,则5(1+2a)﹣2a2【分析】先根据a2﹣5a﹣1=0计算出a2﹣5a=1,再将5+10a﹣2a2转化为﹣2(a2﹣5a)+5,然后将a2﹣5a=1整体代入﹣【解答】解:∵a2﹣5a﹣∴a2﹣5a∴原式=5+10a﹣2=﹣2(a2﹣5a=﹣2×1+5=3.故答案为3.【点评】本题考查了整式的加减﹣﹣化简求值,要注意整体思想的应用.5.如果点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,那么m的值为3.【分析】根据函数值相等两点关于对称轴对称,可得答案.【解答】解:由点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,得(﹣1,4)与(m,4)关于对称轴x=1对称,m﹣1=1﹣(﹣1),解得m=3,故答案为:3.【点评】本题考查了二次函数图象上点的坐标特征,利用函数值相等两点关于对称轴对称得出m﹣1=1﹣(﹣1)是解题关键.6.如图,等腰直角△ABC中,AC=BC,∠ACB=90°,点O分斜边AB为BO:OA=1:,将△BOC绕C点顺时针方向旋转到△AQC的位置,则∠AQC=105°.【分析】连接OQ,由旋转的性质可知:△AQC≌△BOC,从而推出∠OAQ=90°,∠OCQ=90°,再根据特殊直角三角形边的关系,分别求出∠AQO与∠OQC的值,可求出结果.【解答】解:连接OQ,∵AC=BC,∠ACB=90°,∴∠BAC=∠B=45°,由旋转的性质可知:△AQC≌△BOC,∴AQ=BO,CQ=CO,∠QAC=∠B=45°,∠ACQ=∠BCO,∴∠OAQ=∠BAC+∠CAQ=90°,∠OCQ=∠OCA+∠ACQ=∠OCA+∠BCO=90°,∴∠OQC=45°,∵BO:OA=1:,设BO=1,OA=,∴AQ=1,则tan∠AQO==,∴∠AQO=60°,∴∠AQC=105°.【点评】本题主要考查了图形旋转的性质,特殊角直角三角形的边角关系,掌握图形旋转的性质,熟记特殊直角三角形的边角关系是解决问题的关键.7.如图,在平行四边形ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若弧EF的长为,则AB=2.【分析】由切线的性质和平行四边形的性质得到BA⊥AC,∠ACB=∠B=45°,∠DAC=∠ACB=45°=∠FAE,根据弧长公式求出弧长,得到半径,即可求得结果.【解答】解:如图所示,连接AC,∵CD与⊙A相切,∴CD⊥AC,在平行四边形ABCD中,∵AB=DC,AB∥CD,AD∥BC,∴BA⊥AC,∵AB=AC∴∠ACB=∠B=45°,∵AD∥BC∴∠FAE=∠B=45°,∠DAC=∠ACB=45°=∠FAE,∴=,∴的长度==,解得R=2,即AB=2.故答案是:2.【点评】本题考查了切线的性质,平行四边形的性质,弧长的求法.切

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论