版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省邹平市一中学校2026届高二数学第一学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若变量x,y满足约束条件,则目标函数最大值为()A.1 B.-5C.-2 D.-72.已知两条直线:,:,且,则的值为()A.-2 B.1C.-2或1 D.2或-13.等差数列前项和,已知,,则的值是().A. B.C. D.4.过,两点的直线的一个方向向量为,则()A.2 B.2C.1 D.15.若数列满足,则数列的通项公式为()A. B.C. D.6.在一次体检中,发现甲、乙两个单位的职工中体重超过的人员的体重如下(单位:).若规定超过为显著超重,从甲、乙两个单位中体重超过的职工中各抽取1人,则这2人中,恰好有1人显著超重的概率为()A. B.C. D.7.已知双曲线的一条渐近线方程为,则该双曲线的离心率为()A. B.C. D.8.倾斜角为45°,在y轴上的截距为2022的直线方程是()A. B.C. D.9.“,”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.曲线与曲线()的()A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等11.方程表示的曲线经过的一点是()A. B.C. D.12.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校男教师的人数为()A.167 B.137C.123 D.113二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的左、右焦点分别为,双曲线左支上点满足,则的面积为_________14.设函数为奇函数,当时,,则_______15.历史上第一个研究圆锥曲线的是梅纳库莫斯(公元前375年—325年),大约100年后,阿波罗尼奥更详尽、系统地研究了圆锥曲线,并且他还进一步研究了这些圆锥曲线的光学性质,比如:从抛物线的焦点发出的光线或声波在经过抛物线反射后,反射光线平行于抛物线的对称轴:反之,平行于抛物线对称轴的光线,经抛物线反射后,反射光线经过抛物线的焦点.已知抛物线,经过点一束平行于C对称轴的光线,经C上点P反射后交C于点Q,则PQ的长度为______.16.已知曲线,则曲线在点处的切线方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)[79.5,89.5)这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的众数、中位数、平均数是多少?18.(12分)在△中,角A,B,C的对边分别为a,b,c,已知,,.(1)求的大小及△的面积;(2)求的值.19.(12分)在实验室中,研究某种动物是否患有某种传染疾病,需要对其血液进行检验.现有份血液样本,有以下两种检验方式:一是逐份检验,则需要检验n次;二是混合检验,将其中k(且)份血液样本分别取样混合在一起检验,如果检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了;如果检验结果为阳性,为了明确这k份究竟哪些为阳性,就需要对它们再次取样逐份检验,那么这k份血液的检验次数共为次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的.且每份样本是阳性结果的概率为(1)假设有5份血液样本,其中只有2份血液样本为阳性,若采用逐份检验方式,求恰好经过3次检验就能把阳性样本全部检测出来的概率;(2)假设有4份血液样本,现有以下两种方案:方案一:4个样本混合在一起检验;方案二:4个样本平均分为两组,分别混合在一起检验若检验次数的期望值越小,则方案越优现将该4份血液样本进行检验,试比较以上两个方案中哪个更优?20.(12分)已知圆C经过,,三点,并且与y轴交于P,Q两点,求线段PQ的长度.21.(12分)已知:,椭圆,双曲线.(1)若的离心率为,求的离心率;(2)当时,过点的直线与的另一个交点为,与的另一个交点为,若恰好是的中点,求直线的方程.22.(10分)2021年11月初某市出现新冠病毒感染者,该市教育局部署了“停课不停学”的行动,老师们立即开展了线上教学.某中学为了解教学效果,于11月30日复课第一天安排了测试,数学教师为了调查高二年级学生这次测试的数学成绩与每天在线学习数学的时长之间的相关关系,对在校高二学生随机抽取45名进行调查,了解到其中有25人每天在线学习数学的时长不超过1小时,并得到如下的统计图:(1)根据统计图填写下面列联表,是否有95%的把握认为“高二学生的这次摸底考试数学成绩与其每天在线学习数学的时长有关”;数学成绩不超过120分数学成绩超过120分总计每天在线学习数学的时长不超过1小时25每天在线学习数学的时长超过1小时总计45(2)从被抽查的,且这次数学成绩超过120分的学生中,按分层抽样的方法抽取5名,再从这5名同学中随机抽取2名,求这两名同学中至多有一名每天在线学习数学的时长超过1小时的概率附:,其中.参考数据:0.1000.0500.0100.0012.7063.8416.63510.828
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可【详解】解:由得作出不等式组对应的平面区域如图(阴影部分平移直线,由图象可知当直线,过点时取得最大值,由,解得,所以代入目标函数,得,故选:A2、B【解析】两直线平行,倾斜角相等,斜率均不存在或斜率存在且相等,据此即可求解.【详解】:,:斜率不可能同时不存在,∴和斜率相等,则或,∵m=-2时,和重合,故m=1.另解:,故m=1.故选:B.3、C【解析】由题意,设等差数列的公差为,则,故,故,故选4、C【解析】应用向量的坐标表示求的坐标,由且列方程求y值.【详解】由题设,,则且,所以,即,可得.故选:C5、D【解析】由,分两步,当求出,当时得到,两式作差即可求出数列的通项公式;【详解】解:因为①,当时,,当时②,①②得,所以,当时也成立,所以;故选:D6、B【解析】列举出所有选取的情况,再找出满足题意的情况,根据古典概型的概率计算公式即可求解.【详解】不妨用表示每种抽取情况,其中是指甲单位抽取1人的体重,代表从乙单位抽取人的体重.则所有的可能有16种,如下所示:,,,,,,,,,,,,,,,其中满足题意的有6种:,,,,,故抽取的这2人中,恰好有1人显著超重的概率为:.故选:.7、B【解析】由双曲线的渐近线方程以及即可求得离心率.【详解】由已知条件得,∴,∴,∴,∴,故选:.8、A【解析】根据直线斜率与倾斜角的关系,结合直线斜截式方程进行求解即可.【详解】因为直线的倾斜角为45°,所以该直线的斜率为,又因为该直线在y轴上的截距为2022,所以该直线的方程为:,故选:A9、A【解析】由正切函数性质,应用定义法判断条件间充分、必要关系.【详解】当,,则,当时,,.∴“,”是“”的充分不必要条件.故选:A10、D【解析】分别求出两椭圆的长轴长、短轴长、离心率、焦距,即可判断.【详解】曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为;曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为.对照选项可知:焦距相等.故选:D.11、C【解析】当时可得,可得答案.【详解】当时可得所以方程表示的曲线经过的一点是,且其它点都不满足方程,故选:C12、C【解析】根据图形分别求出初中部和高中部男教师的人数,最后相加即可.【详解】初中部男教师的人数为110×(170%)=33;高中部男教师的人数为150×60%=90,∴该校男教师的人数为33+90=123.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】由双曲线方程可得,利用双曲线定义,以及直角三角形的勾股定理可得,由此求得答案.【详解】由双曲线的左、右焦点分别为,双曲线左支上点满足,可得:,则,且,故,所以,故,故答案为:314、【解析】由奇函数的定义可得,代入解析式即可得解.【详解】函数为奇函数,当时,,所以.故答案为-1.【点睛】本题主要考查了奇函数的求值问题,属于基础题.15、####【解析】根据题意,求得点以及抛物线焦点的坐标,即可求得所在直线方程,联立其与抛物线方程,求得点的坐标,即可求得.【详解】因为经过点一束平行于C对称轴的光线交抛物线于点,故对,令,则可得,也即的坐标为,又抛物线的焦点的坐标为,故可得直线方程为,联立抛物线方程可得:,,解得或,将代入,可得,即的坐标为,则.故答案为:.16、【解析】利用导数求出切线的斜率即得解.【详解】解:由题得,所以切线的斜率为,所以切线的方程为即.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)0.25,15;(2)众数为74.5,中位数为72.8,平均分为70.5.【解析】(1)直接利用频率和频数公式求解;(2)利用频率分布直方图的公式求众数、中位数、平均数.【详解】(1)频率=(89.5-79.5)×0.025=0.25;频数=60×0.25=15.(2)[69.5,79.5)一组的频率最大,人数最多,则众数为74.5,左边三个矩形的面积和为0.4,左边四个矩形的面积和为0.7,所以中位数在第4个矩形中,设中位数为,所以中位数为72.8.平均分为44.5×0.1+54.5×0.15+64.5×0.15+74.5×0.3+84.5×0.25+94.5×0.05=70.518、(1),△的面积为;(2).【解析】(1)应用余弦定理求的大小,由三角形面积公式求△的面积;(2)由(1)及正弦定理的边角关系可得,即可求目标式的值.【小问1详解】在△中,由余弦定理得:,又,则.所以△的面积为.【小问2详解】由(1)得:,由正弦定理得:,则,所以.19、(1)(2)方案一更优【解析】(1)分两类,由古典概型可得;(2)分别求出两种方案的数学期望,然后比较可知.【小问1详解】恰好经过3次检验就能把阳性样本全部检测出来分为两种情况:第一种:前两次检测中出现一次阳性一次阴性且第三次为阳性第二种:前三次检测均阴性,所以概率为【小问2详解】方案一:混在一起检验,记检验次数为X,则X的取值范围是,,,方案二:每组的两个样本混合在一起检验,若结果呈阴性,则检验次数为1,其概率为,若结果呈阳性,则检验次数为3,其概率为设检验次数为随机变量Y,则Y的取值范围是,,,,,所以,方案一更优20、【解析】设圆的方程为,代入点的坐标,求出,,,令,即可得出结论【详解】解:设圆的方程为,则,,,,,即,令,可得,解得、,所以、,或、,,21、(1)(2)或【解析】(1)有椭圆的离心率可以得到,的关系,在双曲线中方程是非标准的方程,注意套公式时容易出错.(2)联立方程分别解得P,Q两点的横坐标,利用中点坐标公式即可解得斜率值.【小问1详解】椭圆的离心率为,,在双曲线中因为,.【小问2详解】当时,椭圆,双曲线.当过点的直线斜率不存在时,点P,Q恰好重合,坐标为,所以不符合条件;当斜率存在时,设直线方程为,,联立方程得,利用韦达定理,所以;同理联立方程,韦达定理得,所以由于是的中点,所以,所以,即,化简得,所以直线方程为或.22、(1)表格见解析,有(2)【解析】(1)根据统计图计算填表即可;(2)根据古典概型计算公式计算即可.【小问1详解】根据统计图可得:每天在线学习数学的时长不超过1小时数学成绩不超过120分的有人,每天在线学习数学的时长不超过1小时数学成绩超过120分的有人,每天在线学习数学的时长超过1小时数学成绩不超过120分的有人,每天在线学习数学的时长超过1小时数学成绩超过120分的有人,可得列联表如下:数学成绩不超过120分数学成绩超过120分总计每天在线学习数学的时长不超过1小时151025每天在线学习数学的时长超过1小时51520总计202545根据列联表中的数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 面试公务员真题及答案
- 春季防流感知识
- 医美效果保障服务合同
- 幼儿园教师心肺复苏培训课件
- 十二月初八腊八节专题课件
- 六级考试真题及答案
- 性功能障碍改善药
- 2026年初中科技创新大赛项目答辩常见问题含答案
- 设备的维修保养培训课件
- 2026年汕头职业技术学院单招综合素质考试模拟试题带答案解析
- 2025贵州铜仁市“千名英才·智汇铜仁”本地引才413人考试题库附答案
- 山西省2026届高三第一次八省联考语文(T8联考)(含答案)
- 2025年杭州余杭水务有限公司招聘36人参考笔试题库及答案解析
- 2025山东聊城市市属事业单位定向招聘随军未就业家属8人备考核心试题附答案解析
- 急危重症护理进展
- 陕西省建筑场地墓坑探查与处理技术规程
- 2022-2023学年四川省乐山市市中区外研版(三起)六年级上册期末测试英语试卷(含听力音频)
- 滕州菜煎饼创新创业计划书
- 2024北京朝阳区初一(上)期末道法试卷及答案
- 送货单格式模板
- GB/T 42430-2023血液、尿液中乙醇、甲醇、正丙醇、丙酮、异丙醇和正丁醇检验
评论
0/150
提交评论