云南省通海二中2026届数学高二上期末统考试题含解析_第1页
云南省通海二中2026届数学高二上期末统考试题含解析_第2页
云南省通海二中2026届数学高二上期末统考试题含解析_第3页
云南省通海二中2026届数学高二上期末统考试题含解析_第4页
云南省通海二中2026届数学高二上期末统考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省通海二中2026届数学高二上期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若抛物线焦点坐标为,则的值为A. B.C.8 D.42.设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.已知动圆过定点,并且与定圆外切,则动圆的圆心的轨迹是()A.抛物线 B.椭圆C.双曲线 D.双曲线的一支4.已知平面向量,且,向量满足,则的最小值为()A. B.C. D.5.已知是数列的前项和,,则数列是()A.公比为3的等比数列 B.公差为3的等差数列C.公比为的等比数列 D.既非等差数列,也非等比数列6.已知直线,两个不同的平面,,则下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则7.平行六面体的各棱长均相等,,,则异面直线与所成角的余弦值为()A. B.C. D.8.已知F为椭圆C:=1(a>b>0)右焦点,O为坐标原点,P为椭圆C上一点,若|OP|=|OF|,∠POF=120°,则椭圆C的离心率为()A. B.C.-1 D.-19.设是公差的等差数列,如果,那么()A. B.C. D.10.在正方体中中,,若点P在侧面(不含边界)内运动,,且点P到底面的距离为3,则异面直线与所成角的余弦值是()A. B.C. D.11.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是A.y与x具有正的线性相关关系B.回归直线过样本点中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg12.某学校的校车在早上6:30,6:45,7:00到达某站点,小明在早上6:40至7:10之间到达站点,且到达的时刻是随机的,则他等车时间不超过5分钟的概率是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直线l:和圆C:,过直线l上一点P作圆C的一条切线,切点为A,则的最小值为______14.如图所示,直线是曲线在点处的切线,则__________.15.已知等差数列的前n项和为,,,则______16.若点到点的距离比它到定直线的距离小1,则点满足的方程为_____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中内角A、B、C所对的边分别为a、b、c,且(1)求角A(2)若,,求的面积18.(12分)一个经销鲜花产品的微店,为保障售出的百合花品质,每天从云南鲜花基地空运固定数量的百合花,如有剩余则免费分赠给第二天购花顾客,如果不足,则从本地鲜花供应商处进货.今年四月前10天,微店百合花的售价为每支2元,云南空运来的百合花每支进价1.6元,本地供应商处百合花每支进价1.8元,微店这10天的订单中百合花的需求量(单位:支)依次为:251,255,231,243,263,241,265,255,244,252.(Ⅰ)求今年四月前10天订单中百合花需求量的平均数和众数,并完成频率分布直方图;(Ⅱ)预计四月的后20天,订单中百合花需求量的频率分布与四月前10天相同,百合花进货价格与售价均不变,请根据(Ⅰ)中频率分布直方图判断(同一组中的需求量数据用该组区间的中点值作代表,位于各区间的频率代替位于该区间的概率),微店每天从云南固定空运250支,还是255支百合花,四月后20天百合花销售总利润会更大?19.(12分)已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线在y轴上的截距为m,交椭圆于A,B两个不同点.(Ⅰ)求椭圆的方程;(Ⅱ)求m的取值范围;(Ⅲ)求证直线MA,MB与x轴始终围成一个等腰三角形.20.(12分)已知函数.(1)当时,求的单调区间与极值;(2)若在上有解,求实数a的取值范围.21.(12分)在平面直角坐标系xOy中,已知点、,点M满足,记点M的轨迹为C(1)求C的方程;(2)若直线l过圆圆心D且与圆交于A,B两点,点P为C上一个动点,求的最小值22.(10分)如图,在直三棱柱中,,,与交于点,为的中点,(1)求证:平面;(2)求证:平面平面

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先把抛物线方程整理成标准方程,进而根据抛物线的焦点坐标,可得的值.【详解】抛物线的标准方程为,因为抛物线的焦点坐标为,所以,所以,故选A.【点睛】该题考查的是有关利用抛物线的焦点坐标求抛物线的方程的问题,涉及到的知识点有抛物线的简单几何性质,属于简单题目.2、B【解析】求出不等式的等价形式,结合充分条件和必要条件的定义进行判断即可【详解】由得或,由得,因为或推不出,但能推出或成立,所以“”是“”的必要不充分条件,故选:B3、D【解析】结合双曲线定义的有关知识确定正确选项.【详解】圆圆心为,半径为,依题意可知,结合双曲线的定义可知,的轨迹为双曲线的一支.故选:D4、B【解析】由题设可得,又,易知,,将问题转化为平面点线距离关系:向量的终点为圆心,1为半径的圆上的点到向量所在射线的距离最短,即可求的最小值.【详解】解:∵,而,∴,又,即,又,,∴,若,则,∴在以为圆心,1为半径的圆上,若,则,∴问题转化为求在圆上的哪一点时,使最小,又,∴当且仅当三点共线且时,最小为.故选:B.【点睛】关键点点睛:由已知确定,,构成等边三角形,即可将问题转化为圆上动点到射线的距离最短问题.5、D【解析】由得,然后利用与的关系即可求出【详解】因为,所以所以当时,时,所以故数列既非等差数列,也非等比数列故选:D【点睛】要注意由求要分两步:1.时,2.时.6、C【解析】对于A,可能在内,故可判断A;对于B,可能相交,故可判断B;对于C,根据线面垂直的判定定理,可判定C;对于D,和可能平行,或斜交或在内,故可判断D.【详解】对于A,除了外,还有可能在内,故可判断A错误;对于B,,那么可能相交,故可判断B错误;对于C,根据线面平行的性质定理可知,在内一定存在和平行的直线,那么该直线也垂直于,所以,故判定C正确;对于D,,,则和可能平行,或斜交或在内,故可判D.错误,故选:C.7、B【解析】利用基底向量表示出向量,,即可根据向量夹角公式求出【详解】如图所示:不妨设棱长为1,,,所以==,,,即,故异面直线与所成角的余弦值为故选:B注意事项:1.将答案写在答题卡上2.本卷共10小题,共80分.8、D【解析】记椭圆的左焦点为,在中,通过余弦定理得出,,根据椭圆的定义可得,进而可得结果.【详解】记椭圆的左焦点为,在中,可得,在中,可得,故,故,故选:D.9、D【解析】由已知可得,即可得解.【详解】由已知可得.故选:D.10、A【解析】如图建立空间直角坐标系,先由,且点P到底面的距离为3,确定点P的位置,然后利用空间向量求解即可【详解】如图,以为坐标原点,以所在的直线分别为轴,建立空间直角坐标系,则,所以,所以,所以,因为,所以平面,因为平面平面,点P在侧面(不含边界)内运动,,所以,因为点P到底面的距离为3,所以,所以,因为,所以异面直线与所成角的余弦值为,故选:A11、D【解析】根据y与x的线性回归方程为y=0.85x﹣85.71,则=0.85>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加1cm,预测其体重约增加0.85kg,C正确;该大学某女生身高为170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误故选D12、B【解析】求出小明等车时间不超过5分钟能乘上车的时长,即可计算出概率.【详解】6:40至7:10共30分钟,小明同学等车时间不超过5分钟能乘上车只能是6:40至6:45和6:55至7:00到站,共10分钟,所以所求概率为.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】求出圆C的圆心坐标、半径,再借助圆的切线性质及勾股定理列式计算作答.【详解】圆C:,圆心为,半径,点C到直线l的距离,由圆的切线性质知:,当且仅当,即点P是过点C作直线l的垂线的垂足时取“=”,所以的最小值为1故答案为:114、##【解析】利用直线所过点求得直线的斜率,从而求得.【详解】由图象可知直线过,所以直线的斜率为,所以.故答案为:15、-1【解析】由已知及等差数列通项公式、前n项和公式,列方程求基本量即可.【详解】若公差为,则,可得.故答案为:.16、【解析】根据抛物线的定义可得动点的轨迹方程【详解】点到点的距离比它到直线的距离少1,所以点到点的距离与到直线的距离相等,所以其轨迹为抛物线,焦点为,准线为,所以方程为,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据正弦定理,结合三角形内角和定理、两角和的正弦公式进行求解即可;(2)根据余弦定理,结合三角形面积公式进行求解即可.【小问1详解】,由正弦定理知,,即又,且.所以,由于.所以;【小问2详解】由余弦定理得:,又,所以所以.18、(Ⅰ)见解析(Ⅱ)四月后20天总利润更大【解析】(Ⅰ)根据众数的定义直接可求出众为255.利用平均数的公式可以求出平均数.根据给定的分组,通过计算完成频率分布直方图(Ⅱ)设订单中百合花需求量为(支),由(Ⅰ)中频率分布直方图,可以求出可能取值、每个可能取值相应频率,每个可能取值相应的天数.分别求出空运250支,255支百合花时,销售总利润的大小,进行比较,得出结论【详解】解:(Ⅰ)四月前10天订单中百合需求量众数为255,平均数频率分布直方图补充如下:(Ⅱ)设订单中百合花需求量为(支),由(Ⅰ)中频率分布直方图,可能取值为235,245,255,265,相应频率分别为0.1,0.3,0.4,0.2,∴20天中相应的天数为2天,6天,8天,4天.①若空运250支,当日利润为,,当日利润为,,当日利润为,,当日利润为,20天总利润为元.②若空运255支,当日利润为,,当日利润为,,当日利润为,,当日利润为,20天总利润为元.∵,∴每天空运250支百合花四月后20天总利润更大.【点睛】本题考查了众数、平均数、频率分布直方图;重点考查了学生通过阅读,提取有用信息,用数学知识解决实际生活问题的能力19、(Ⅰ);(Ⅱ)且;(Ⅲ)证明见解析.【解析】(Ⅰ)设出椭圆方程,根据题意得出关于的方程组,从而求得椭圆的方程;(Ⅱ)根据题意设出直线方程,并与椭圆方程联立消元,根据直线与椭圆方程有两个不同交点,利用即可求出m取值范围;(Ⅲ)设直线MA,MB的斜率分别为k1,k2,根据题意把所证问题转化为证明k1+k2=0即可.【详解】(1)设椭圆方程为,由题意可得,解得,∴椭圆方程为;(Ⅱ)∵直线l平行于OM,且在y轴上的截距为m,,所以设直线的方程为,由消元,得∵直线l与椭圆交于A,B两个不同点,所以,解得,所以m的取值范围为.(Ⅲ)设直线MA,MB的斜率分别为k1,k2,只需证明k1+k2=0即可,设,由(Ⅱ)可知,则,由,而,,故直线MA,MB与x轴始终围成一个等腰三角形.20、(1)在上单调递减,在上单调递增,函数有极小值,无极大值(2)【解析】(1)利用导数的正负判断函数的单调性,然后由极值的定义求解即可;(2)分和两种情况分析求解,当时,不等式变形为在,上有解,构造函数,利用导数研究函数的单调性,求解的最小值,即可得到答案【小问1详解】当时,,所以当时;当时,所以在上单调递减,在上单调递增,所以当时函数有极小值,无极大值.【小问2详解】因为在上有解,所以在上有解,当时,不等式成立,此时,当时在上有解,令,则由(1)知时,即,当时;当时,所以在上单调递减,在上单调递增,所以当时,,所以,综上可知,实数a的取值范围是.点睛】利用导数研究不等式恒成立问题或有解问题的策略为:通常构造新函数或参变量分离,利用导数研究函数的单调性,求出最值从而求得参数的取值范围21、(1)(2)23【解析】(1)根据双曲线的定义判断轨迹,直接写出轨迹方程即可;(2)设,利用向量坐标运算计算,再由二次函数求最值即可.【小问1详解】由,则轨迹C是以点、为左、右焦点的双曲线的右支,设轨迹C的方程为,则,可得,,所以C的方程为;【小问2详解】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论