版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(完整版)苏教版七年级下册期末数学资料专题试题A卷及解析一、选择题1.a6÷a3的计算结果是()A.a9 B.a18 C.a3 D.a2答案:C解析:C【分析】同底数幂相除,底数不变,指数相减,据此计算即可.【详解】解:a6÷a3=a6-3=a3.故选:C.【点睛】本题考查了同底数幂的除法,掌握幂的运算法则是解答本题的关键.2.如图,和不是同位角的是()A. B. C. D.答案:C解析:C【分析】根据同位角定义可得答案.【详解】解:A、∠1和∠2是同位角,故此选项不符合题意;B、∠1和∠2是同位角,故此选项不符合题意;C、∠1和∠2不是同位角,故此选项符合题意;D、∠1和∠2是同位角,故此选项不符合题意;故选C.【点睛】本题考查同位角的概念.解题的关键是掌握同位角的概念,是需要熟记的内容.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.3.已知是不等式的解,b的值可以是()A.4 B.2 C.0 D.答案:A解析:A【分析】把x的值代入不等式,求出b的取值范围即可得解.【详解】解:∵是不等式的解,∴,解得,所以,选项A符合题意,故选:A.【点睛】此题主要考查了不等式的解和解不等式,熟练掌握不等式的解是解答此题的关键.4.若,则下列判断中错误的是()A. B. C. D.答案:D解析:D【分析】根据不等式的基本性质进行判断【详解】,故A正确;故B正确;故C正确;故D错误;所以答案选D【点睛】本题主要考查了不等式的基本性质5.已知关于x的不等式组,有以下说法:①若它的解集是1<x≤2,则a=5;②当a=0时,它无解;③若它的整数解仅有3个,则整数a=10;④若它有解,则a≥3.其中正确的说法有()A.1个 B.2个 C.3个 D.4个答案:B解析:B【分析】先求出各不等式的解集,再根据各小题的结论解答即可.【详解】解:解不等式得,x>1;解不等式2x﹣a≤﹣1得,x≤,①∵它的解集是1<x≤2,∴=2,解得a=5,故本小题正确;②∵a=0,解不等式2x﹣a≤﹣1得a≤﹣,∴不等式组无解,故本小题正确;③∵它的整数解仅有3个,则整数解为2,3,4,∴4≤<5,∴9≤a<11,∴整数a为9或10,故本小题错误;④∵不等式组有解,∴<1,∴a<3,故本小题错误,故选:B.【点睛】本题考查的是解一元一次不等式组,熟知解一元一次不等式的基本步骤是解答此题的关键.6.下列命题中,真命题有()①邻补角的角平分线互相垂直;②两条直线被第三条直线所截,内错角相等;③两边分别平行的两角相等;④如果x2>0,那么x>0;⑤经过直线外一点,有且只有一条直线与这条直线平行.A.2个 B.3个 C.4个 D.5个答案:A解析:A【分析】根据平行线的性质、对顶角的概念和性质、平方的概念判断即可.【详解】①邻补角的角平分线互相垂直,正确,是真命题;②两条平行直线被第三条直线所截,内错角相等,故错误,是假命题;③两边分别平行的两角相等或互补,故错误,是假命题;④如果x2>0,那么x>0,错误,是假命题;⑤经过直线外一点,有且只有一条直线与这条直线平行,正确,是真命题,正确的有2个,故选A.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.设一列数中任意三个相邻的数之和都是20,已知,那么的值是()A.4 B.5 C.8 D.11答案:A解析:A【分析】由题可知,a1,a2,a3每三个循环一次,可得a18=a3,a64=a1,所以6-x=-6x+11,即可求a2=4,a3=11,a1=5,再由2021除以3的余数可得结果.【详解】解:由题可知,a1+a2+a3=a2+a3+a4,∴a1=a4,∵a2+a3+a4=a3+a4+a5,∴a2=a5,∵a4+a5+a6=a3+a4+a5,∴a3=a6,…∴a1,a2,a3每三个循环一次,∵18÷3=6,∴a18=a3,∵64÷3=21…1,∴a64=a1,∴a1=20-4x-(9+2x)=-6x+11,∴6-x=-6x+11,解得:x=1,∴a2=4,a3=11,a1=5,∵2021÷3=673…2,∴a2021=a2=4,故选A.【点睛】本题主要考查规律型:数字的变化类,能够通过所给例子,找到式子的规律,利用有理数的运算解题是关键.8.如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=85°,则∠2的度数()A.24° B.25° C.30° D.35°答案:D解析:D【分析】首先根据三角形内角和定理可得∠AEF+∠AFE=120°,再根据邻补角的性质可得∠FEB+∠EFC=360°-120°=240°,再根据由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,然后计算出∠1+∠2的度数,进而得到答案.【详解】解:∵∠A=60°,∴∠AEF+∠AFE=180°-60°=120°,∴∠FEB+∠EFC=360°-120°=240°,∵由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,∴∠1+∠2=240°-120°=120°,∵∠1=85°,∴∠2=120°-85°=35°.故选D.【点睛】此题主要考查了翻折变换,关键是根据题意得到翻折以后,哪些角是对应相等的.二、填空题9.计算:3x3•(﹣2x)2=_______.解析:12x5【分析】根据积的乘方运算,同底数幂相乘,单项式乘单项式,把系数和相同字母分别相乘.【详解】解:原式=3x3•4x2=12x5,故答案为:12x5.【点睛】本题考查了积的乘方运算,同底数幂相乘,单项式乘单项式,把系数和相同字母分别相乘是解题的关键.10.命题:“任意两个负数之和是负数”的逆命题是______命题.(填“真”或“假”).解析:假【分析】写出原命题的逆命题后判断正误即可.【详解】解:命题:“任意两个负数之和是负数”的逆命题是负数是两个负数之和,错误,为假命题,故答案为:假.【点睛】考查了命题与定理的知识,解题的关键是了解如何写出一个命题的逆命题,难度不大.11.四边形的内角和是a,五边形的外角和是b,则a与b的大小关系是:a____b.解析:=【分析】根据题意,可分别表示出四边形的内角和与五边形的外角和,从而比较即可.【详解】四边形的内角和为:,五边形的外角和为:,则,故答案为:=.【点睛】本题考查多边形的内角和与外角和,熟记内角和公式及多边形外角和是解题关键.12.记T=16k2-24k+11,则T的最小值为____________.解析:2【分析】先利用完全平方公式进行配方,再利用平方的非负性即可得出答案;【详解】解:T=16K2-24k+11=(4k)2-24k+9+2=(4k-3)2+2∵(4k-3)2≥0,∴T的最小值为2,故答案为:2【点睛】本题考查了因式分解的应用,得出T=(4k-3)2+2是解题的关键.13.已知方程组中,a,b互为相反数,则m的值是_________.解析:3【分析】首先通过解二元一次方程组解出a,b,然后根据a,b互为相反数即可求出m的值.【详解】解:①+②,可得3a=m+6,解得a=+2,把a=+2代入①,解得b=﹣4,∵a,b互为相反数,∴a+b=0,∴(+2)+(﹣4)=0,解得m=3.故答案为:3【点睛】本题主要考查解二元一次方程组和一元一次方程,正确解出a,b的值是关键.14.木匠有32m的木板,他想要在花圃周围做围栏.他考虑将花圃设计成以下的造型上述四个方案中,能用32m的木板来围成的是_______(写出所有可能的序号).解析:①③④【分析】根据平移的方法将①③图形通过平移变换得到图形④,根据垂线段最短,可得②的周长大于32,据此分析即可.【详解】解:平移的方法将①③图形通过平移变换得到图形④,①周长=2(10+6)=32(m);②∵垂线段最短,∴平行四边形的另一边一定大于6m,∵2(10+6)=32(m),∴周长一定大于32m;③周长=2(10+6)=32(m);④周长=2(10+6)=32(m);故答案为:①③④.【点睛】本题考查了平移的实际应用,垂线段最短,掌握平移的性质是解题的关键.15.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于______度.答案:108°【分析】如图,易得△OCD为等腰三角形,根据正五边形内角度数可求出∠OCD,然后求出顶角∠COD,再用360°减去∠AOC、∠BOD、∠COD即可【详解】∵五边形是正五边形,∴每解析:108°【分析】如图,易得△OCD为等腰三角形,根据正五边形内角度数可求出∠OCD,然后求出顶角∠COD,再用360°减去∠AOC、∠BOD、∠COD即可【详解】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.故答案为108°【点睛】本题考查正多边形的内角计算,分析出△OCD是等腰三角形,然后求出顶角是关键.16.如图,若AD是△ABC的BC边上的高,AE是∠BAC的角平分线,∠C=42°,∠BAE=15°,则∠DAB=_______°答案:18【分析】先由三角形的高和内角和求出∠DAC,然后由角平分线得出∠BAC,从而计算即可得到答案.【详解】解:∵AD是△ABC的BC边上的高,∠C=42°,∴∠DAC=180°-90°-4解析:18【分析】先由三角形的高和内角和求出∠DAC,然后由角平分线得出∠BAC,从而计算即可得到答案.【详解】解:∵AD是△ABC的BC边上的高,∠C=42°,∴∠DAC=180°-90°-42°=48°,∵AE是∠BAC的角平分线,∴∠BAC=2∠BAE=15°×2=30°,∴∠DAB=∠DAC-∠BAC=48°-30°=18°,故答案为:18.【点睛】本题主要考查了三角形的高和角平分线的内容,注意三角形的内角和是180°,以及三角形的高和角平分线的性质即可解答.17.计算:(1);(2).答案:(1);(2)1【分析】(1)先计算乘方、负整数指数幂、零指数幂、绝对值,再计算乘法,最后计算加减即可;(2)原式变形为20202-(2020-1)×(2020+1),再利用平方差公式进一步计解析:(1);(2)1【分析】(1)先计算乘方、负整数指数幂、零指数幂、绝对值,再计算乘法,最后计算加减即可;(2)原式变形为20202-(2020-1)×(2020+1),再利用平方差公式进一步计算即可.【详解】解:(1)==;(2)===1【点睛】本题主要考查整式的混合运算,实数的混合运算,解题的关键是掌握整式混合运算顺序和相关运算法则.18.因式分解:(1)16x2-9y2(2)(x2+y2)2-4x2y2答案:(1);(2).【分析】(1)直接利用平方差公式分解即可;(2)先利用平方差公式,再利用完全平方公式即可.【详解】(1)原式;(2)原式.【点睛】本题考查了利用平方差公式和完全解析:(1);(2).【分析】(1)直接利用平方差公式分解即可;(2)先利用平方差公式,再利用完全平方公式即可.【详解】(1)原式;(2)原式.【点睛】本题考查了利用平方差公式和完全平方公式进行因式分解,熟记公式是解题关键.19.解方程组:(1)(2)答案:(1);(2).【分析】(1)利用加减消元法,②-①即可求解;(2)利用加减消元法,由①×3-②求解即可.【详解】解:(1),②-①得:,把代入①得:,方程缉的解为(2),①×3解析:(1);(2).【分析】(1)利用加减消元法,②-①即可求解;(2)利用加减消元法,由①×3-②求解即可.【详解】解:(1),②-①得:,把代入①得:,方程缉的解为(2),①×3-②得:,即,将,①得:,方程组的解为.【点睛】本题考查了解二元一次方程组,解二元一次方程组要利用消元的思想,消元的方法有:代入消元和加减消元.20.利用数轴解不等式组,并判断3是否是该不等式组的解.答案:1≤x≤4,不是【分析】分别求出每一个不等式的解集,在数轴上表示出不等式的解集,从而得到不等式组的解集,再进一步判断是否在此范围即可.【详解】解:,解不等式①,得:x≥1,解不等式②,得解析:1≤x≤4,不是【分析】分别求出每一个不等式的解集,在数轴上表示出不等式的解集,从而得到不等式组的解集,再进一步判断是否在此范围即可.【详解】解:,解不等式①,得:x≥1,解不等式②,得:x≤4,将不等式的解集表示在数轴上如下:∴不等式组的解集为1≤x≤4,∵>4,∴不是该不等式组的解.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.三、解答题21.如图,,,.判断是否平分,并说明理由.答案:平分,理由见解析【分析】由,得到,根据同位角相等,两直线平行得到,从而得出、,再加上得到,进而得出结论.【详解】结论:平分理由如下:,,,.(垂直定义)..(同位角相等,两直线平解析:平分,理由见解析【分析】由,得到,根据同位角相等,两直线平行得到,从而得出、,再加上得到,进而得出结论.【详解】结论:平分理由如下:,,,.(垂直定义)..(同位角相等,两直线平行).(两直线平行,同位角相等).(两直线平行,内错角相等)又,.平分.【点晴】考查了平行线的判定和性质、角平分线的判定,解题关键是根据同位角相等,两直线平行得到和由平行线的性质得到、.22.某电器经营业主两次购进一批同种型号的挂式空调和电风扇,第一次购进8台空调和20台电风扇;第二次购进10台空调和30台电风扇.(1)若第一次用资金25600元,第二次用资金32800元,求挂式空调和电风扇每台的采购价各是多少元?(2)在(1)的条件下,若该业主计划再购进这两种电器50台,而可用于购买这两种电器的资金不超过30000元,问该经营业主最多可再购进空调多少台?答案:(1)挂式空调每台的采购价是2800元,电风扇每台的采购价是160元;(2)该经营业主最多可再购进空调8台.【分析】(1)设挂式空调每台的采购价是x元,电风扇每台的采购价是y元,利用购进8台空解析:(1)挂式空调每台的采购价是2800元,电风扇每台的采购价是160元;(2)该经营业主最多可再购进空调8台.【分析】(1)设挂式空调每台的采购价是x元,电风扇每台的采购价是y元,利用购进8台空调和20台电风扇共花资金25600元;购进10台空调和30台电风扇共花资金32800元,列方程组即可得到答案;(2)设再购进空调a台,则购进风扇(50-a)台,再利用购买这两种电器的资金不超过30000元,列不等式,即可得到答案.【详解】解:(1)设挂式空调每台的采购价是x元,电风扇每台的采购价是y元,根据题意,得,解得.即挂式空调和电风扇每台的采购价分别是每台元,元.(2)设再购进空调a台,则购进风扇(50-a)台,由已知,得,解得:,为正整数,的最大整数值为即经营业主最多可再购进空调8台.答:挂式空调每台的采购价是2800元,电风扇每台的采购价是160元.该经营业主最多可再购进空调8台.【点睛】本题考查的是二元一次方程组的应用,一元一次不等式的应用,准确的确定相等关系与不等关系列方程组与不等式是解题的关键.23.阅读以下内容:已知有理数m,n满足m+n=3,且求k的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m,n的方程组,再求k的值;乙同学:将原方程组中的两个方程相加,再求k的值;丙同学:先解方程组,再求k的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x,y的方程组时,可以用①×7﹣②×3消去未知数x,也可以用①×2+②×5消去未知数y.求a和b的值.答案:(1)见解析;(2)a和b的值分别为2,5.【分析】(1)分别选择甲、乙、丙,按照提示的方法求出k的值即可;(2)根据加减消元法的过程确定出a与b的值即可.【详解】解:(1)选择甲,,①解析:(1)见解析;(2)a和b的值分别为2,5.【分析】(1)分别选择甲、乙、丙,按照提示的方法求出k的值即可;(2)根据加减消元法的过程确定出a与b的值即可.【详解】解:(1)选择甲,,①×3﹣②×2得:5m=21k﹣8,解得:m=,②×3﹣①×2得:5n=2﹣14k,解得:n=,代入m+n=3得:=3,去分母得:21k﹣8+2﹣14k=15,移项合并得:7k=21,解得:k=3;选择乙,,①+②得:5m+5n=7k﹣6,解得:m+n=,代入m+n=3得:=3,去分母得:7k﹣6=15,解得:k=3;选择丙,联立得:,①×3﹣②得:m=11,把m=11代入①得:n=﹣8,代入3m+2n=7k﹣4得:33﹣16=7k﹣4,解得:k=3;(2)根据题意得:,解得:,检验符合题意,则a和b的值分别为2,5.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24.已知ABCD,点E是平面内一点,∠CDE的角平分线与∠ABE的角平分线交于点F.(1)若点E的位置如图1所示.①若∠ABE=60°,∠CDE=80°,则∠F=°;②探究∠F与∠BED的数量关系并证明你的结论;(2)若点E的位置如图2所示,∠F与∠BED满足的数量关系式是.(3)若点E的位置如图3所示,∠CDE为锐角,且,设∠F=α,则α的取值范围为.答案:(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A解析:(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70,即可求解;②分别过E、F作EN//AB,FM//AB,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解;(2)根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED与∠BFD之间的数量关系;(3)通过对的计算求得,利用角平分线的定义以及三角形外角的性质求得,即可求得.【详解】(1)①过F作FG//AB,如图:∵AB∥CD,FG∥AB,∴CD∥FG,∴∠ABF=∠BFG,∠CDF=∠DFG,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60+80=140,∴∠ABF+∠CDF=70,∴∠DFB=∠ABF+∠CDF=70,故答案为:70;②∠F=∠BED,理由是:分别过E、F作EN//AB,FM//AB,∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,∴∠BED=∠ABE+∠CDE,∵DF、BF分别是∠CDE的角平分线与∠ABE的角平分线,∴∠ABE=2∠ABF,∠CDE=2∠CDF,即∠BED=2(∠ABF+∠CDF);同理,由FM//AB,可得∠F=∠ABF+∠CDF,∴∠F=∠BED;(3)2∠F+∠BED=360°.如图,过点E作EG∥AB,则∠BEG+∠ABE=180°,∵AB∥CD,EG∥AB,∴CD∥EG,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由①得:∠BFD=∠ABF+∠CDF,∴∠BED=360°-2∠BFD,即2∠F+∠BED=360°;(3)∵,∠F=α,∴,解得:,如图,∵∠CDE为锐角,DF是∠CDE的角平分线,∴∠CDH=∠DHB,∴∠F∠DHB,即,∴,故答案为:.【点睛】本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.25.已知E、D分别在的边、上,C为平面内一点,、分别是、的平分线.(1)如图1,若点C在上,且,求证:;(2)如图2,若点C在的内部,且,请猜想、、之间的数量关系,并证明;(3)若点C在的外部,且,请根据图3、图4直接写出结果出、、之间的数量关系.答案:(1)证明见解析;(2)∠CDB+∠AEC=2∠DCE;(3)图3中∠CDB=∠AEC+2∠DCE,图4中∠AEC=∠CDB+2∠DCE.【分析】(1)依据DE、DF分别是∠CDO、∠CDB的平解析:(1)证明见解析;(2)∠CDB+∠AEC=2∠DC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年电视屏幕保养合同
- 2026年汽车行业用户需求合同
- 验资报告服务合同2026年保密义务
- 2026年食品质量保证合同协议
- 细胞与基因治疗革命
- 家用厨房用火用电安全培训课件
- 《信息技术基础(上册)》课件 模块二课题四
- 家政法律培训法课件
- 建筑施工企业安全员年终总结
- 培训讲师演讲课件
- 航天禁(限)用工艺目录(2021版)-发文稿(公开)
- TCALC 003-2023 手术室患者人文关怀管理规范
- 关键对话-如何高效能沟通
- 村级组织工作制度
- 汽车吊、随车吊起重吊装施工方案
- 中外政治思想史练习题及答案
- 人教版九年级化学导学案全册
- 降低阴式分娩产后出血发生率-PDCA
- 国开电大商业银行经营管理形考作业3参考答案
- GB/T 5211.6-2020颜料和体质颜料通用试验方法第6部分:水悬浮液pH值的测定
- GB/T 36024-2018金属材料薄板和薄带十字形试样双向拉伸试验方法
评论
0/150
提交评论