(完整版)苏教七年级下册期末数学模拟真题试卷经典答案_第1页
(完整版)苏教七年级下册期末数学模拟真题试卷经典答案_第2页
(完整版)苏教七年级下册期末数学模拟真题试卷经典答案_第3页
(完整版)苏教七年级下册期末数学模拟真题试卷经典答案_第4页
(完整版)苏教七年级下册期末数学模拟真题试卷经典答案_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(完整版)苏教七年级下册期末数学模拟真题试卷经典答案一、选择题1.下列计算中,正确的是().A. B.C. D.2.如图图形中,∠1和∠2不是同位角的是()A. B.C. D.3.若方程组的解满足,则的最大整数值是()A.-4 B.4 C.-2 D.24.下列各式计算正确的是()A. B.C. D.5.若不等式的解为,则m的值是()A.m=-1 B.m=0 C.m=1 D.m=36.下列命题中,真命题的个数为()(1)如果,那么a>b;(2)对顶角相等;(3)四边形的内角和为;(4)平行于同一条直线的两条直线平行;A.1个 B.2个 C.3个 D.4个7.定义一种对正整数n的“F”运算:①当n为奇数时,结果为;②当n为偶数时,结果为;(其中k是使为奇数的正整数),并且运算可以重复进行,例如,取.则:若,则第2021次“F运算”的结果是()A.68 B.78 C.88 D.988.如图,已知直线,被直线所截,,是平面内任意一点(点不在直线,,上),设,.下列各式:①,②,③,④,的度数可能是()A.①②③ B.①②④ C.①③④ D.①②③④二、填空题9.计算:﹣xy•5x3=________.10.命题“全等三角形的对应角相等”的逆命题是_____命题.(填“真”或“假”)11.一个正多边形的内角和是外角和的3倍,则这个正多边形的一个内角的度数是______度.12.正数满足,那么______.13.若方程组的解也是二元一次方程的一个解,则的值等于__________.14.某宾馆在重新装修后考虑在大厅内的主楼梯上铺设地毯,已知主楼梯宽为3m,其剖面如图所示,那么需要购买地毯_______m2.15.已知三角形的三边长分别为4,8,a,则a的取值范围是______.16.如图:中,点、、分别在边,,上,为的中点,,,交于一点,,,,则的值是.17.计算:(1)-22+30-(2)(-2a)3-(-a)(3a)2(3)(2a-3b)2-4a(a-2b)(4)(m-2n+3)(m+2n-3).18.因式分解:(1)2m2﹣4mn+2n2;(2)x4﹣1.19.解方程组(1)(2)20.解不等式组:,并写出该不等式组的整数解.三、解答题21.如图,△ABC中,D是AC上一点,过D作DE∥BC交AB于E点,F是BC上一点,连接DF.若∠1=∠AED.(1)求证:DF∥AB.(2)若∠1=50°,DF平分∠CDE,求∠C的度数.22.小明用的练习本可以到甲、乙两家商店购买,已知两商店的标价都是每本1元,甲商店的优惠条件是购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是,从第一本起按标价的80%出售.(1)若设小明要购买x(x>10)本练习本,则当小明到甲商店购买时,须付款元,当到乙商店购买时,须付款元;(2)买多少本练习本时,两家商店付款相同?(3)请你给出小明购买建议.23.若关于x的方程ax+b=0(a≠0)的解与关于y的方程cy+d=0(c≠0)的解满足﹣1≤x﹣y≤1,则称方程ax+b=0(a≠0)与方程cy+d=0(c≠0)是“友好方程”.例如:方程2x﹣1=0的解是x=0.5,方程y﹣1=0的解是y=1,因为﹣1≤x﹣y≤1,方程2x﹣1=0与方程y﹣1=0是“友好方程”.(1)请通过计算判断方程2x﹣9=5x﹣2与方程5(y﹣1)﹣2(1﹣y)=﹣34﹣2y是不是“友好方程”.(2)若关于x的方程3x﹣3+4(x﹣1)=0与关于y的方程+y=2k+1是“友好方程”,请你求出k的最大值和最小值.24.如图,直线m与直线n互相垂直,垂足为O、A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.(1)若∠BAO和∠ABO的平分线相交于点Q,在点A,B的运动过程中,∠AQB的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由.(2)若AP是∠BAO的邻补角的平分线,BP是∠ABO的邻补角的平分线,AP、BP相交于点P,AQ的延长线交PB的延长线于点C,在点A,B的运动过程中,∠P和∠C的大小是否会发生变化?若不发生变化,请求出∠P和∠C的度数;若发生变化,请说明理由.25.如图1,将一副三角板与三角板摆放在一起;如图2,固定三角板,将三角板绕点A按顺时针方向旋转,记旋转角().(1)当________度时,;当________度时;(2)当的一边与的某一边平行(不共线)时,直接写出旋转角的所有可能的度数;(3)当,连接,利用图4探究的度数是否发生变化,并给出你的证明.【参考答案】一、选择题1.D解析:D【分析】根据单项式乘单项式、合并同类项、幂的乘方进行计算,积的乘方判断即可.【详解】A.,故该选项不正确,不符合题意;B.,故该选项不正确,不符合题意;C.,故该选项不正确,不符合题意;D.,故该选项正确,符合题意;故选D【点睛】本题考查了单项式乘单项式、合并同类项、幂的乘方进行计算,积的乘方,掌握以上运算法则是解题的关键.2.B解析:B【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.【详解】解:∵选项B中∠1和∠2是由四条直线组成,∴∠1和∠2不是同位角.故选:B.【点睛】本题主要考查的是同位角的定义,掌握同位角的定义是解题的关键.3.B解析:B【分析】将方程组两方程相加表示出x+y,代入x+y>-2中计算即可求出a的值.【详解】解:用①+②得:,∴,∵,∴,∴,∴a的最大值为4,故选B.【点睛】此题考查了二元一次方程组的解,解题关键在于表示出x+y.4.D解析:D【分析】根据积的乘方、完全平方公式、平方差公式、多项式乘以多项式法则分别计算即可求出答案.【详解】解:A、原式=9a2,故A不符合题意.B、原式=a2+6a+9,故B不符合题意.C、原式=-(a-3)(a+3)=-a2+9,故C不符合题意.D、原式=a2+2a-3,故D符合题意.故选:D.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的混合运算法则,本题属于基础题型.5.C解析:C【分析】根据不等式的运算法则可得,因为,所以可得,进而求解即可.【详解】原不等式的解为解得m=1故选C.【点睛】本题主要考查含参数不等式的运算,关键是根据不等式的性质来得到,再根据题意建立含参数的方程,进而求解问题的答案.6.C解析:C【分析】根据有理数的乘方法则、对顶角相等、多边形的内角和、平行线的判定定理判断即可.【详解】(1)如果,那么|a|>|b|,本命题是假命题;(2)对顶角相等,本命题是真命题;(3)四边形的内角和为360°,本命题是真命题;(4)平行于同一条直线的两条直线平行,本命题是真命题;故选:C.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.D解析:D【分析】根据题意,可以写出前几次的运算结果,从而可以发现数字的变化特点,然后即可写出第2021次“F运算”的结果.【详解】解:本题提供的“F运算”,需要对正整数n分情况(奇数、偶数)循环计算,由于n=49为奇数应先进行F①运算,即3×49+5=152(偶数),需再进行F②运算,即152÷23=19(奇数),再进行F①运算,得到3×19+5=62(偶数),再进行F②运算,即62÷21=31(奇数),再进行F①运算,得到3×31+5=98(偶数),再进行F②运算,即98÷21=49,再进行F①运算,得到3×49+5=152(偶数),…,即第1次运算结果为152,…,第4次运算结果为31,第5次运算结果为98,…,可以发现第6次运算结果为49,第7次运算结果为152,则6次一循环,2021÷6=336…5,则第2021次“F运算”的结果是98.故选:D.【点睛】本题考查了整式的运算能力,既渗透了转化思想、分类思想,又蕴涵了次数、结果规律探索问题,检测学生阅读理解、抄写、应用能力.8.D解析:D【分析】根据点E有种可能的位置,分情况进行讨论,根据平行的性质以及三角形外角的性质进行计算求解即可得到答案;【详解】解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=β(两直线平行,内错角相等),∵∠AOC=∠BAE1+∠AE1C(三角形的一个外角等于与它不相邻的两个内角和),∴∠AE1C=β-α.(2)如图2,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β.(4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°-α-β.(5)(6)当点E在CD的下方时,同理可得,∠AEC=α-β或β-α.(7)如图5,当AE平分∠BAC,CE平分∠ACD时,∠BAE+∠DCE=∠CAE+∠ACE=α+β=90°,即∠AEC=180°-α-β;综上所述,∠AEC的度数可能为β-α,α+β,α-β,360°-α-β或180°-α-β.故选:D.【点睛】本题主要考查了平行线的性质的运用、三角形的外角等于与它不相邻的两个内角和,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.二、填空题9.﹣5x4y【分析】应用单项式乘单项式乘法法则进行计算即可得出答案.【详解】解:原式=﹣5x4y.故答案为:﹣5x4y.【点睛】本题主要考查了单项式乘以单项式,解题的关键在于能够熟练掌握单项式乘以单项式的计算法则.10.假【分析】首先分清题设是:两个三角形全等,结论是:对应角相等,把题设与结论互换即可得到逆命题,然后判断正误即可.【详解】解:“全等三角形的对应角相等”的题设是:两个三角形全等,结论是:对应角相等,因而逆命题是:对应角相等的三角形全等.是一个假命题.故答案为:假.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.135【分析】先由多边形的内角和和外角和的关系判断出多边形的边数,即可得到结论.【详解】设多边形的边数为n.因为正多边形内角和为(n−2)•180°,正多边形外角和为360°,根据题意得:(n−2)•180°=360°×3,解得:n=8.∴这个正多边形的每个外角==45°,则这个正多边形的每个内角是180°−45°=135°,故答案为:135.【点睛】本题考查了正多边形的内角与外角,正多边形的性质;熟练掌握正多边形的性质,求出正多边形的边数是解决问题的关键.12.64【分析】将式子因式分解为(a-c)(b+2)=0,求得a=c,同理可得a=b=c,再=12可化为a2+4a-12=0,求出a的值,再求得值即可.【详解】解:∵,∴ab-bc+2(a-c)=0,即(a-c)(b+2)=0,∵b﹥0,∴b+2≠0,∴a-c=0,∴a=c,同理可得a=b,b=c,∴a=b=c,∴=12可化为a2+4a-12=0∴(a+6)(a-2)=0,∵a为正数,∴a+6≠0,∴a-2=0,∴a=2,即a=b=c=2,∴(2+2)×(2+2)×(2+2)=64故答案为64.【点睛】本题考查因式分解的应用;能够将所给式子进行正确的因式分解是解题的关键.13.7【分析】先把2x-y=1中的y用x表示出来,代入3x+2y=12求出x的值,再代入2x-y=1求出y的值,最后将所求x,y的值代入5x-my=-11解答即可.【详解】解:根据题意得∴由①得:y=2x-1,代入②用x表示y得,3x+2(2x-1)=12,解得:x=2,代入①得,y=3,∴将x=2,y=3,代入5x-my=-11解得,m=7.故答案为:7.【点睛】本题考查了解二元一次方程和解二元一次方程组的基本运算技能:移项、合并同类项、系数化为1等,表示谁就该把谁放到等号的一边,其他的项移到另一边,然后合并同类项、系数化1就可用含y的式子表示x的形式.14.【分析】地毯的长度实际是所有台阶的宽加上台阶的高,再由主楼梯宽3米可得出地毯的面积.【详解】解:由题意得:地毯的长为:,∴地毯的面积.故答案为:.【点睛】本题主要考查了平移的性质的实际应用,解题的关键是先求出地毯的长度.15.4<a<12【详解】根据三角形的三边关系,得8−4<a<8+4,即:4<a<12.故答案为4<a<12.解析:4<a<12【详解】根据三角形的三边关系,得8−4<a<8+4,即:4<a<12.故答案为4<a<12.16.30【分析】∵为的中点,∴可知,就能知道,∵可知,∴可知的面积【详解】∵E为AC的中点,,∴,∵,∴,∵,∴,∴【点睛】本题主要利用等底等高的两个三角形面积相等,等高的三角形的面解析:30【分析】∵为的中点,∴可知,就能知道,∵可知,∴可知的面积【详解】∵E为AC的中点,,∴,∵,∴,∵,∴,∴【点睛】本题主要利用等底等高的两个三角形面积相等,等高的三角形的面积的比等于两三角形底的比值,这样可以一步步求出三角形面积17.(1)-1;(2)-a3;(3)-4ab+9b2;(4)m2-4n2+12n-9.【详解】试题分析:本题主要考察整式的乘除,用相应的法则计算即可.(1)原式="4"+1+2=-1;(2解析:(1)-1;(2)-a3;(3)-4ab+9b2;(4)m2-4n2+12n-9.【详解】试题分析:本题主要考察整式的乘除,用相应的法则计算即可.(1)原式="4"+1+2=-1;(2)原式=-8a3+9a3=-a3;(3)原式=4a2-12ab+9b2-4a2+8ab=-4ab+9b2;(4)原式=m2-(2n-3)2=m2-4n2+12n-9.考点:整式的乘除.18.(1)2(m﹣n)2;(2)(x2+1)(x+1)(x﹣1).【分析】(1)综合利用提取公因式法和公式法进行因式分解即可;(2)利用两次平方差公式进行因式分解即可.【详解】解:(1)2m2解析:(1)2(m﹣n)2;(2)(x2+1)(x+1)(x﹣1).【分析】(1)综合利用提取公因式法和公式法进行因式分解即可;(2)利用两次平方差公式进行因式分解即可.【详解】解:(1)2m2﹣4mn+2n2=2(m2﹣2mn+n2)=2(m﹣n)2;(2)x4﹣1=(x2+1)(x2﹣1)=(x2+1)(x+1)(x﹣1).【点睛】本题考查了综合提取公因式法和公式法、公式法进行因式分解,因式分解的主要方法包括:提取公因式法、公式法、十字相乘法、分组分解法等,熟记各方法是解题关键.19.(1);(2)【分析】(1)利用代入消元法求解可得;(2)利用加减消元法求解可得.【详解】解:(1),将①代入②,得:,解得:,代入①中,解得:,所以方程组的解为;(2),①+解析:(1);(2)【分析】(1)利用代入消元法求解可得;(2)利用加减消元法求解可得.【详解】解:(1),将①代入②,得:,解得:,代入①中,解得:,所以方程组的解为;(2),①+②×2,得:,解得:,代入②中,解得:,所以方程组的解为.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.,整数解为-2,-1,0,1【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分,确定出不等式组的整数解即可.【详解】解:由①得.由②得,不等式组的解集为,则不等式组的整数解为解析:,整数解为-2,-1,0,1【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分,确定出不等式组的整数解即可.【详解】解:由①得.由②得,不等式组的解集为,则不等式组的整数解为-2,-1,0,1.【点睛】此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.三、解答题21.(1)见解析;(2)80°【分析】(1)根据DE∥BC,得到∠EDF=∠1,由∠1=∠AED,则∠EDF=∠AED,从而可以得证;(2)先根据平行线的性质求出∠C+∠EDC=180°,∠EDF解析:(1)见解析;(2)80°【分析】(1)根据DE∥BC,得到∠EDF=∠1,由∠1=∠AED,则∠EDF=∠AED,从而可以得证;(2)先根据平行线的性质求出∠C+∠EDC=180°,∠EDF=∠1=50°,再由角平分线的定义得到∠CDE=2∠EDF=100°,从而可以求解.【详解】解:(1)∵DE∥BC,∴∠EDF=∠1,∵∠1=∠AED,∴∠EDF=∠AED,∴DF∥AB;(2)∵DE∥BC,∠1=50°,∴∠C+∠EDC=180°,∠EDF=∠1=50°,∵DF平分∠CDE,∴∠CDE=2∠EDF=100°,∴∠C=180°-∠CDE=80°.【点睛】本题主要考查了平行线的性质与判定,角平分线的定义,解题的关键在于能够熟练掌握相关知识进行求解.22.(1)(0.7x+3),0.8x;(2)30;(3)见解析【详解】试题分析:(1)根据题中的收费标准表示出到甲乙两商店的费用即可;(2)令甲乙两商店费用相等求出x的值即可;(3)根据小明所解析:(1)(0.7x+3),0.8x;(2)30;(3)见解析【详解】试题分析:(1)根据题中的收费标准表示出到甲乙两商店的费用即可;(2)令甲乙两商店费用相等求出x的值即可;(3)根据小明所购买的练习本的本数分类讨论即可.试题解析:解:(1)根据题意得,当小明到甲商店购买时,须付款:70%(x﹣10)+10=0.7x+3,当到乙商店购买时,须付款:80%x=0.8x.故答案为(0.7x+3),0.8x;(2)根据题意得:0.7x+3=0.8x,解得:x=30,则买30本练习本时,两家商店付款相同;(3)由(2)可知,当购买30本练习本时,选择哪个商店均可;当0.7x+3>0.8x,即x<30时,去乙商店买更划算;当0.7x+3<0.8x,即x>30时,去甲商店买更划算.点睛:此题考查了一元一次方程的应用,以及列代数式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23.(1)是;(2)k的最小值为﹣,最大值为【分析】(1)分别解出两个方程,得到x﹣y的值,即可确定两个方程是“友好方程”;(2)分别解两个方程为x=1,,再由已知可得﹣1≤≤1,求出k的取值范围解析:(1)是;(2)k的最小值为﹣,最大值为【分析】(1)分别解出两个方程,得到x﹣y的值,即可确定两个方程是“友好方程”;(2)分别解两个方程为x=1,,再由已知可得﹣1≤≤1,求出k的取值范围为即可求解.【详解】解:(1)由2x﹣9=5x﹣2,解得x=,由5(y﹣1)﹣2(1﹣y)=﹣34﹣2y,解得y=﹣3,∴x﹣y=,∴﹣1≤x﹣y≤1,∴方程2x﹣9=5x﹣2与方程5(y﹣1)﹣2(1﹣y)=﹣34﹣2y是“友好方程”;(2)由3x﹣3+4(x﹣1)=0,解得x=1,由,解得,∵两个方程是“友好方程”,∴﹣1≤x﹣y≤1,∴﹣1≤≤1,∴∴k的最小值为﹣,最大值为.【点睛】本题主要考查了解一元一次方程和解一元一次不等式组,解题的关键在于能够熟练掌握相关知识进行求解.24.(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°.【分析】第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BA解析:(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°.【分析】第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BAQ与∠ABQ的和,最后在△ABQ中,根据三角形的内角各定理可求∠AQB的大小.第(2)题求∠P的大小,用邻补角、角平分线、平角、直角和三角形内角和定理等知识求解.【详解】解:(1)∠AQB的大小不发生变化,如图1所示,其原因如下:∵m⊥n,∴∠AOB=90°,∵在△ABO中,∠AOB+∠ABO+∠BAO=180°,∴∠ABO+∠BAO=90°,又∵AQ、BQ分别是∠BAO和∠ABO的角平分线,∴∠BAQ=∠BAC,∠ABQ=∠ABO,∴∠BAQ+∠ABQ=(∠ABO+∠BAO)=又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°,∴∠AQB=180°﹣45°=135°.(2)如图2所示:①∠P的大小不发生变化,其原因如下:∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180°∠BAQ+∠ABQ=90°,∴∠ABF+∠EAB=360°﹣90°=270°,又∵AP、BP分别是∠BAE和∠ABP的角平分线,∴∠PAB=∠EAB,∠PBA=∠ABF,∴∠PAB+∠PBA=(∠EAB+∠ABF)=×270°=135°,又∵在△PAB中,∠P+∠PAB+∠PBA=180°,∴∠P=180°﹣135°=45°.②∠C的大小不变,其原因如下:∵∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论