版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(完整版)数学初中苏教七年级下册期末重点中学题目经典及解析一、选择题1.计算的结果是()A. B. C. D.2.如图,与是()A.同位角 B.内错角 C.同旁内角 D.对顶角3.观察下列式子:4×6-2×4=4×4;6×8-4×6=6×4;8×10-6×8=8×4;…若第n个等式的右边的值大于180,则n的最小值是()A.20 B.21 C.22 D.234.对于下列命题:①若,则;②在直角三角形中,任意两个内角的和一定大于第三个内角;③无论取何值,代数式的值都不小于1.④在同一个平面内,有两两相交的三条直线,这些相交直线构成的所有角中,至少有一个角小于.其中真命题有()A.1个 B.2个 C.3个 D.4个5.对非负实数“四舍五入”到个位的值记为,即:当为非负整数时,如果,则.反之,当为非负整数时,如果时,则,如,,,,…若关于的不等式组的整数解恰有个,则a的范围()A.1.5≤a<2.5 B.0.5<a≤1.5 C.1.5<a≤2.5 D.0.5≤a<1.56.下列命题中,真命题有()①邻补角的角平分线互相垂直;②两条直线被第三条直线所截,内错角相等;③两边分别平行的两角相等;④如果x2>0,那么x>0;⑤经过直线外一点,有且只有一条直线与这条直线平行.A.2个 B.3个 C.4个 D.5个7.观察下列按一定规律排列的n个数:2,4,6,8,10,12,…,若最后三个数之和是300,则n等于()A.49 B.50 C.51 D.1028.如图,将三角形纸片折叠,为折痕,点C落外的点F处,,,,则()A.95° B.105° C.115° D.125°二、填空题9.计算=____.10.命题“平面内,垂直于同一条直线的两条直线平行”是____命题(填写“真”或“假”).11.如果一个多边形的每一个外角都等于60°,则它的内角和是__________.12.如图是一个长和宽分别为a、b的长方形,它的周长为14、面积为10,则a2b+ab2的值为___.13.已知x,y满足方程组.给出下列结论:①若方程组的解也是的解,则;②若方程组的解满足,则;③无论k为何值,;④若,则.正确的是________.(填序号)14.如图,是线段外一点,连接,,过点作线段的垂线,垂足为.在、、这三条线段中,是最短的线段,依据是_______.15.如果三角形两条边分别为3和5,则周长L的取值范围是________16.如图,将△AOB绕点O按逆时针方向旋转45°后得到ΔA′OB′,若∠AOB=25°,则∠AOB′的度数_________.17.计算或化简.(1)(2)(3)18.因式分解:(1)2m2﹣4mn+2n2;(2)x4﹣1.19.解方程组:(1)(2)20.解下列不等式或不等式组:(1)(2)三、解答题21.如图,若,,试说明的理由.22.如图,某工厂与、两地有公路、铁路相连.这家工厂近期从地购买一批原料运回工厂,制成的产品再全部运到地.已知公路的运价为2元(吨千米),铁路的运价为1.5元(吨千米),且这两次运输共支出公路运费48000元,铁路运费207000元.(1)求从地购买的原料和运到地的产品各多少吨?(2)如果购买这批原料的价格为每吨1千元,且这家工厂希望这批产品全部售出后获得不低于20万元的利润(利润销售额原料费运输费),那么每吨产品的最低售价应定为多少元(结果取整数)?23.小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条公共边.(1)小红首先用根小木棍摆出了个小正方形,请你用等式表示之间的关系:;(2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?(3)小红重新用50根小木棍,摆出了排,共个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示之间的关系,并写出所有可能的取值.24.互动学习课堂上某小组同学对一个课题展开了探究.小亮:已知,如图三角形,点是三角形内一点,连接,,试探究与,,之间的关系.小明:可以用三角形内角和定理去解决.小丽:用外角的相关结论也能解决.(1)请你在横线上补全小明的探究过程:∵,(______)∴,(等式性质)∵,∴,∴.(______)(2)请你按照小丽的思路完成探究过程;(3)利用探究的结果,解决下列问题:①如图①,在凹四边形中,,,求______;②如图②,在凹四边形中,与的角平分线交于点,,,则______;③如图③,,的十等分线相交于点、、、…、,若,,则的度数为______;④如图④,,的角平分线交于点,则,与之间的数量关系是______;⑤如图⑤,,的角平分线交于点,,,求的度数.25.如图,,点在直线上,点在直线和之间,,平分.(1)求的度数(用含的式子表示);(2)过点作交的延长线于点,作的平分线交于点,请在备用图中补全图形,猜想与的位置关系,并证明;(3)将(2)中的“作的平分线交于点”改为“作射线将分为两个部分,交于点”,其余条件不变,连接,若恰好平分,请直接写出__________(用含的式子表示).【参考答案】一、选择题1.B解析:B【分析】根据幂的乘方运算法则计算即可.【详解】故选:B.【点睛】本题考查了幂的乘方运算法则:幂的乘方,底数不变指数相乘,用字母表示为,其中m、n都为正整数,掌握这个计算法则是关键,同时注意结果的符号.2.A解析:A【分析】先确定基本图形中的截线与被截线,进而确定这两个角的位置关系即可.【详解】解:根据图象,∠A与∠1是两直线被第三条直线所截得到的两角,因而∠A与∠1是同位角,故选:A.【点睛】本题主要考查了同位角的定义,是需要识记的内容,比较简单.3.C解析:C【分析】根据规律确定第n个等式:2(n+1)(2n+4)-2n(2n+2)=2(n+1)×4,根据第n个等式的右边的值大于180,列不等式可得结论.【详解】解:第1个式子:4×6-2×4=4×4;第2个式子:6×8-4×6=6×4;第3个式子:8×10-6×8=8×4;…∴第n个等式:2(n+1)(2n+4)-2n(2n+2)=2(n+1)×4;∵第n个等式的右边的值大于180,即2(n+1)×4>180,n>21.5,∴n的最小值是22.故选:C.【点睛】本题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键,注意n的值为正整数,在解得n>21.5时,要注意向上取整.4.A解析:A【分析】根据不等式的性质、三角形内角和定理、完全平方公式、以及平角的定义解答即可.【详解】解:①当a=-1,b=-2时,满足a>b,但a2<b2;原命题是假命题;②在直角三角形中,两个锐角和等于第三个内角,原命题是假命题;③无论x取什么值,代数式x2-2x+2=(x-1)2+1≥1,所以其值都不小于1,是真命题;④在同一平面内,有两两相交的3条直线,这些相交直线构成的所有角中,当三个角都等于60°时,三个角的和等于180°,条件成立,所以原命题是假命题.故答案为:A.【点睛】本题考查了命题与定理知识点,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目.5.D解析:D【分析】将〈a〉看作一个字母,通过解不等式组以及不等式组的整数解即可求出a的取值范围.【详解】解:解不等式组,解得:,由不等式组的整数解恰有个得:,故,故答案选D.【点睛】此题主要考查了一元一次不等式组的应用以及新定义,根据题意正确理解<x>的意义是解题的关键.6.A解析:A【分析】根据平行线的性质、对顶角的概念和性质、平方的概念判断即可.【详解】①邻补角的角平分线互相垂直,正确,是真命题;②两条平行直线被第三条直线所截,内错角相等,故错误,是假命题;③两边分别平行的两角相等或互补,故错误,是假命题;④如果x2>0,那么x>0,错误,是假命题;⑤经过直线外一点,有且只有一条直线与这条直线平行,正确,是真命题,正确的有2个,故选A.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.C解析:C【分析】观察得出第n个数为2n,根据最后三个数的和为300,列出方程,求解即可.【详解】解:由题意,得第n个数为2n,那么2n+2(n﹣1)+2(n﹣2)=300,解得:n=51,故选:C.【点睛】此题考查规律型:数字的变化类,找出数字的变化规律,得出第n个数为2n是解决问题的关键.8.C解析:C【分析】先根据三角形的内角和定理可出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠F=∠C=40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠F=180°,∠5=∠4+∠C=∠4+40°,即可得到∠3+∠4=65°,然后利用平角的定义即可求出∠1,即.【详解】解:如图,∵∠A=65°,∠B=75°,∴∠C=180°-∠A-∠B=180°-65°-75°=40°;又∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠F=∠C=40°,而∠3+∠2+∠5+∠F=180°,∠5=∠4+∠C=∠4+40°,∵,即∠2=35°,∴∠3+35°+∠4+40°+40°=180°,∴∠3+∠4=65°,∴∠1=180°-65°=115°.即故选:C.【点睛】本题考查了折叠问题中的角度计算问题,注意折叠前后,对应角相等,熟练掌握三角形的内角和定理以及外角性质是解题的关键.二、填空题9.-6ab【分析】根据单项式与单项式相乘的运算法则解答即可.【详解】解:故答案为-6ab.【点睛】本题考查了单项式与单项式相乘的运算法则,正确运用单项式与单项式相乘的运算法则是解答本题的关键.10.真【分析】根据平行线的判定方法判断即可.【详解】解:如图,a⊥c,b⊥c,则∠1=∠2=90°,∴a//b,∴“平面内,垂直于同一条直线的两条直线平行”是真命题,故答案为:真.【点睛】本题考查了命题,平行线的判定等知识,解题的关键是熟练掌握平行线的判定方法,属于中考常考题型.11.720°【分析】根据多边形的外角和等于360°,可求出这个多边形的边数,进而,求出这个多边形的内角和.【详解】∵一个多边形的每一个外角都等于60°,又∵多边形的外角和等于360°,∴这个多边形的边数=360°÷60°=6,∴这个多边形的内角和=,故答案是:720°.【点睛】本题主要考查多边形的外角和等于360°以及多边形的内角和公式,掌握多边形的外角和等于360°是解题的关键.12.70【分析】根据已知条件长方形的长与宽之和即a+b=7,长与宽的积为ab=10,再将所给的代数式分解因式,将a+b与ab代入计算即可.【详解】解:根据长方形的周长为14,面积为10,可得a+b=×14=7,ab=10,a2b+ab2=ab(a+b)=10×7=70.故答案为:70.【点睛】本题考查了因式分解的应用,由已知可得到a与b的和,a与b的积;求所给代数式的值,关键先分解因式,用已知式子的值整体代入.13.②③【分析】利用二元一次一次方程组的解法表示出方程组的解,进而分别分析得出答案.【详解】解:,①×3-②得,∵方程组的解也是x+2y=3的解,∴,解得:,∴k=3,故①错误;∵方程组的解满足,∴,∴,故②正确;∵由①可得:,∴,故③正确;∵,∴x+y=0或x-y=0,∴y=-x或x=y,则或,解得:或,故④错误;故答案为:②③.【点睛】本题主要考查解二元一次方程组的能力,熟练掌握解二元一次方程组的方法和二元一次方程的解的定义.14.垂线段最短【分析】根据垂线段最短的定义求解即可.【详解】解:∵点到直线的距离,垂线段最短,∴依据是垂线段最短,故答案为:垂线段最短.【点睛】本题主要考查了垂线段最短的定义,解题的关键在于能够熟记定义.15.10<L<16【分析】根据三角形的三边关系确定第三边的取值范围,再根据不等式的性质求出答案.【详解】设第三边长为x,∵有两条边分别为3和5,∴5-3<x<5+3,解得2<x<8,∴2解析:10<L<16【分析】根据三角形的三边关系确定第三边的取值范围,再根据不等式的性质求出答案.【详解】设第三边长为x,∵有两条边分别为3和5,∴5-3<x<5+3,解得2<x<8,∴2+3+5<x+3+5<8+3+5,∵周长L=x+3+5,∴10<L<16,故答案为:10<L<16.【点睛】此题考查三角形三边关系,不等式的性质,熟记三角形的三边关系确定出第三条边长是解题的关键.16.【分析】根据旋转的定义可知∠BOB′=45°,再依据∠AOB′=∠BOB′-∠AOB即可.【详解】解:根据旋转的定义可知∠BOB′是旋转角为45°,∴∠AOB′=45°-25°=20°.解析:【分析】根据旋转的定义可知∠BOB′=45°,再依据∠AOB′=∠BOB′-∠AOB即可.【详解】解:根据旋转的定义可知∠BOB′是旋转角为45°,∴∠AOB′=45°-25°=20°.故答案为20°.【点睛】本题主要考查了旋转的定义和性质,解题的关键是找准旋转角以及对应的边.17.(1);(2);(3)【分析】(1)根据实数的性质化简即可求解;(2)根据幂的运算法则即可求解;(3)根据整式的加减运算法则即可求解.【详解】解:(1);(2)(3)原解析:(1);(2);(3)【分析】(1)根据实数的性质化简即可求解;(2)根据幂的运算法则即可求解;(3)根据整式的加减运算法则即可求解.【详解】解:(1);(2)(3)原式.【点睛】此题主要考查实数与整式的运算,解题的关键是熟知负指数幂的运算法则.18.(1)2(m﹣n)2;(2)(x2+1)(x+1)(x﹣1).【分析】(1)综合利用提取公因式法和公式法进行因式分解即可;(2)利用两次平方差公式进行因式分解即可.【详解】解:(1)2m2解析:(1)2(m﹣n)2;(2)(x2+1)(x+1)(x﹣1).【分析】(1)综合利用提取公因式法和公式法进行因式分解即可;(2)利用两次平方差公式进行因式分解即可.【详解】解:(1)2m2﹣4mn+2n2=2(m2﹣2mn+n2)=2(m﹣n)2;(2)x4﹣1=(x2+1)(x2﹣1)=(x2+1)(x+1)(x﹣1).【点睛】本题考查了综合提取公因式法和公式法、公式法进行因式分解,因式分解的主要方法包括:提取公因式法、公式法、十字相乘法、分组分解法等,熟记各方法是解题关键.19.(1);(2)【分析】(1)利用代入消元法解方程组即可;(2)整理后,利用加减消元法求解.【详解】解:(1),把②代入①,得,解得:,代入②中,解得:,∴方程组的解为:;(2)方解析:(1);(2)【分析】(1)利用代入消元法解方程组即可;(2)整理后,利用加减消元法求解.【详解】解:(1),把②代入①,得,解得:,代入②中,解得:,∴方程组的解为:;(2)方程组整理得,①-②得:,解得:,代入②中,解得:,∴方程组的解为:.【点睛】本题考查的是二元一次方程组的解法,掌握代入消元法和加减消元法的一般步骤是解题的关键.20.(1);(2)【分析】(1)按照先去分母,然后去括号,移项,合并同类项,化系数为1的步骤解不等式即可;(2)先求出每个不等式的解集,然后求出不等式组的解集即可.【详解】解:(1),去分母解析:(1);(2)【分析】(1)按照先去分母,然后去括号,移项,合并同类项,化系数为1的步骤解不等式即可;(2)先求出每个不等式的解集,然后求出不等式组的解集即可.【详解】解:(1),去分母得:,去括号得:,移项得:,合并得:,化系数为1得:;(2),解不等式①得:,解不等式②得:,,∴不等式组的解集是.【点睛】本题主要考查了解一元一次不等式和解一元一次不等式组,解题的关键在于能够熟练掌握解一元一次不等式的方法.三、解答题21.见详解【分析】根据平行线的性质,得∠DCA=∠BAC,从而得∠3=∠4,进而得CE∥AF,即可得到结论.【详解】证明:∵,∴∠DCA=∠BAC,∵,∴∠3=∠4,∴CE∥AF,∴.解析:见详解【分析】根据平行线的性质,得∠DCA=∠BAC,从而得∠3=∠4,进而得CE∥AF,即可得到结论.【详解】证明:∵,∴∠DCA=∠BAC,∵,∴∠3=∠4,∴CE∥AF,∴.【点睛】本题主要考查平行线的性质和判定定理,熟练掌握上述判定和性质定理,是解题的关键.22.(1)从地购买的原料为600吨和运到地的产品为400吨;(2)每吨产品的最低售价应定2638元.【分析】(1)根据公路的运价为2元(吨千米),铁路的运价为1.5元(吨千米),且这两次运输共支出公解析:(1)从地购买的原料为600吨和运到地的产品为400吨;(2)每吨产品的最低售价应定2638元.【分析】(1)根据公路的运价为2元(吨千米),铁路的运价为1.5元(吨千米),且这两次运输共支出公路运费48000元,铁路运费207000元和图中的数据,可以列出相应的二元一次方程组,然后求解即可;(2)根据购买这批原料的价格为每吨1千元,且这家工厂希望这批产品全部售出后获得不低于20万元的利润,可以列出相应的不等式,从而可以求得每吨产品的售价的取值范围,从而可以求得每吨产品的最低售价应定为多少元.【详解】解:(1)设从地购买的原料为吨和运到地的产品为吨,由题意可得,,解得,答:从地购买的原料为600吨和运到地的产品为400吨;(2)设每吨产品的售价为元,由题意可得,,解得,为整数,的最小值是2638,答:每吨产品的最低售价应定2638元.【点睛】本题考查一元一次不等式的应用、二元一次方程组的应用,解题的关键是明确题意,找出等量关系和不等关系,列出相应的方程组和不等式.23.(1);(2)正方形有16个,六边形有12个;(3),,或【解析】【分析】(1)摆1个正方形需要4根小木棍,摆2个正方形需要7根小木棍,摆3个正方形需要10根小木棍…每多一个正方形就多3根小木解析:(1);(2)正方形有16个,六边形有12个;(3),,或【解析】【分析】(1)摆1个正方形需要4根小木棍,摆2个正方形需要7根小木棍,摆3个正方形需要10根小木棍…每多一个正方形就多3根小木棍,则摆p个正方形需要4+3(p-1)=3p+1根小木棍,由此求得答案即可;(2)设连续摆放了六边形x个,正方形y个,则连续摆放正方形共用小木棍(3y+1)根,六方形共用小木棍(5x+1)根,由题意列出方程组解决问题即可;(3)由(1)可知每排用的小木棍数比这排小正方形个数的3倍多1根,由此可得s、t间的关系,再根据s、t均为正整数进行讨论即可求得所有可能的取值.【详解】(1)摆1个正方形需要4根小木棍,4=4+3×(1-1),摆2个正方形需要7根小木棍,4=4+3×(2-1),摆3个正方形需要10根小木棍,10=4+3×(3-1),……,摆p个正方形需要m=4+3×(p-1)=3p+1根木棍,故答案为:;(2)设六边形有个,正方形有y个,则,解得,所以正方形有16个,六边形有12个;(3)据题意,,据题意,,且均为整数,因此可能的取值为:,,或.【点睛】本题考查二元一次方程组的实际运用,找出连续摆放正方形共用小木棍的根数,六方形共用小木棍的根数是解决问题的关键.24.(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;(2)想要利用外角的性质求解,就需要构造外解析:(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;(2)想要利用外角的性质求解,就需要构造外角,因此延长交于,然后根据外角的性质确定,,即可判断与,,之间的关系;(3)①连接BC,然后根据(1)中结论,代入已知条件即可求解;②连接BC,然后根据(1)中结论,求得的和,进而得到的和,然后根据角平分线求得的和,进而求得,然后利用三角形内角和定理,即可求解;③连接BC,首先求得,然后根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年基层公务员晋升科级考试题含答案
- 2026年甘肃有色冶金职业技术学院高职单招职业适应性测试模拟试题带答案解析
- 2026年黑龙江司法警官职业学院高职单招职业适应性考试模拟试题带答案解析
- 2026年儿童家庭康复指导方案试题含答案
- 2026年电动洗胃技能考试重难点突破题及答案
- 2026年广西水利电力职业技术学院高职单招职业适应性考试备考试题带答案解析
- 2026年电力电缆安装运维考试题含答案
- 2026年大数据治理流程小测卷含答案
- 2026年杭州科技职业技术学院高职单招职业适应性考试模拟试题带答案解析
- 2026年公司司机乘客服务礼仪考点练习题及答案
- GB/T 20863.3-2025起重机分级第3部分:塔式起重机
- 产业发展规划编制方案
- 肾病科出科考试题及答案
- 感术行动培训课件
- 2025年脱毒马铃薯新品种示范基地建设工作方案
- 客运企业事故管理制度
- 2025年烟机设备机械修理工(二级)技能等级认定考试题库(含答案)
- 2025年上海市崇明区高考英语一模试卷
- 公司过账协议合同
- 中国古代石刻艺术赏析
- 《资治通鉴》与为将之道知到课后答案智慧树章节测试答案2025年春武警指挥学院
评论
0/150
提交评论