版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届山东实验中学高一数学第一学期期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的零点所在的区间是()A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)2.已知A(-4,2,3)关于xOz平面的对称点为,关于z轴的对称点为,则等于()A.8 B.12C.16 D.193.已知扇形的圆心角为,面积为,则扇形的半径为()A. B.C. D.4.若,其中,则()A. B.C. D.5.下列函数在上是增函数的是A. B.C. D.6.已知点M与两个定点O(0,0),A(6,0)的距离之比为,则点M的轨迹所包围的图形的面积为()A. B.C. D.7.函数的部分图象如图所示,将的图象向右平移个单位长度后得到的函数图象关于轴对称,则的最小值为()A. B.C. D.8.已知函数,且,,,则的值A.恒为正 B.恒为负C.恒为0 D.无法确定9.某人去上班,先跑步,后步行.如果y表示该人离单位的距离,x表示出发后的时间,那么下列图象中符合此人走法的是().A. B.C. D.10.已知是函数的反函数,则的值为()A.0 B.1C.10 D.100二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的部分图象如图所示,则___________12.给出如下五个结论:①存在使②函数是偶函数③最小正周期为④若是第一象限的角,且,则⑤函数的图象关于点对称其中正确结论序号为______________13.求值:__________14.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角是60°.其中正确结论的序号是________15.用二分法研究函数f(x)=x3+3x-1的零点时,第一次经计算,可得其中一个零点x0∈(0,1),那么经过下一次计算可得x0∈___________(填区间).16.正实数a,b,c满足a+2-a=2,b+3b=3,c+=4,则实数a,b,c之间的大小关系为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.通常表明地震能量大小的尺度是里氏震级,其计算公式为:,其中,是被测地震的最大振幅,是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差)(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是30,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1);(2)5级地震给人的震感已比较明显,计算8级地震的最大振幅是5级地震的最大振幅的多少倍?(以下数据供参考:,)18.已知函数,其中是自然对数的底数,(1)若函数在区间内有零点,求的取值范围;(2)当时,,,求实数的取值范围19.已知A,B,C是三角形三内角,向量,,且(1)求角A;(2)若,求20.(1)已知,,,求的最小值;(2)把角化成的形式.21.已知函数满足,且.(1)求a和函数的解析式;(2)判断在其定义域的单调性.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用零点存在性定理判断即可.【详解】易知函数的图像连续,,由零点存在性定理,排除A;又,,排除B;,,结合零点存在性定理,C正确故选:C.【点睛】判断零点所在区间,只需利用零点存在性定理,求出区间端点的函数值,两者异号即可,注意要看定义域判断图像是否连续.2、A【解析】由题可知∴故选A3、C【解析】利用扇形的面积公式即可求解.【详解】设扇形的半径为,则扇形的面积,解得:,故选:C4、D【解析】化简已知条件,结合求得的值.【详解】依题意,,所以,,由于,所以.故选:D5、A【解析】根据题意,依次分析选项中函数的单调性,综合即可得答案【详解】解:根据题意,依次分析选项:对于A,,在区间上单调递增,符合题意;对于B,,为指数函数,在区间上单调递减,不符合题意;对于C,,为对数函数,在区间上单调递减,不符合题意;对于D,反比例函数,在区间上单调递减,不符合题意;故选A【点睛】本题考查函数单调性的判断,属于基础题6、B【解析】设M(x,y),由点M与两个定点O(0,0),A(3,0)的距离之比为,得:,整理得:(x+2)2+y2=16∴点M的轨迹方程是圆(x+2)2+y2=16.圆的半径为:4,所求轨迹的面积为:16π故答案为B.7、C【解析】观察图象可得函数的最大值,最小值,周期,由此可求函数的解析式,根据三角函数变换结论,求出平移后的函数解析式,根据平移后函数图象关于轴对称,列方程求的值,由此确定其最小值.【详解】根据函数的部分图象,可得,,∴因,可得,又,求得,故将的图象向右平移个单位长度后得到的函数的图象,因为的图象关于直线轴对称,故,即,故的最小值为,故选:C8、A【解析】根据题意可得函数是奇函数,且在上单调递增.然后由,可得,结合单调性可得,所以,以上三式两边分别相加后可得结论【详解】由题意得,当时,,于是同理当时,可得,又,所以函数是上的奇函数又根据函数单调性判定方法可得在上为增函数由,可得,所以,所以,以上三式两边分别相加可得,故选A.【点睛】本题考查函数奇偶性和单调性的判断及应用,考查函数性质的应用,具有一定的综合性和难度,解题的关键是结合题意得到函数的性质,然后根据单调性得到不等式,再根据不等式的知识得到所求9、D【解析】根据随时间的推移该人所走的距离的大小的变化快慢,从而即可获得问题的解答,即先利用时的函数值排除两项,再利用曲线的斜率反映行进速度的特点选出正确结果【详解】解:由题意可知:时所走的路程为0,离单位的距离为最大值,排除A、C,随着时间的增加,先跑步,开始时随的变化快,后步行,则随的变化慢,所以适合的图象为D;故选:D10、A【解析】根据给定条件求出的解析式,再代入求函数值作答.【详解】因是函数的反函数,则,,所以的值为0.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由图象可得最小正周期的值,进而可得,又函数图象过点,利用即可求解.【详解】解:由图可知,因为,所以,解得,因为函数的图象过点,所以,又,所以,故答案为:.12、②③【解析】利用正弦函数的图像与性质,逐一判断即可.【详解】对于①,,,故错误;对于②,,显然为偶函数,故正确;对于③,∵y=sin(2x)的最小正周期为π,∴y=|sin(2x)|最小正周期为.故正确;对于④,令α,β,满足,但,故错误;对于⑤,令则故对称中心为,故错误.故答案为:②③【点睛】本题主要考查三角函数图象与性质,考查辅助角公式和诱导公式、正弦函数的图象的对称性和单调性,属于基础题13、【解析】直接利用两角和的正切公式计算可得;【详解】解:故答案为:14、①②④【解析】①取BD的中点O,连接OA,OC,所以,所以平面OAC,所以AC⊥BD;②设正方形的边长为a,则在直角三角形ACO中,可以求得OC=a,所以△ACD是等边三角形;③AB与平面BCD成45角;④分别取BC,AC的中点为M,N,连接ME,NE,MN.则MN∥AB,且MN=AB=a,ME∥CD,且ME=CD=a,∴∠EMN是异面直线AB,CD所成的角.在Rt△AEC中,AE=CE=a,AC=a,∴NE=AC=a.∴△MEN是正三角形,∴∠EMN=60°,故④正确考点:本小题主要考查平面图形向空间图形的折叠问题,考查学生的空间想象能力.点评:解决此类折叠问题,关键是搞清楚折叠前后的变量和不变的量.15、【解析】根据零点存在性定理判断零点所在区间.【详解】,,所以下一次计算可得.故答案为:16、##【解析】利用指数的性质及已知条件求a、b的范围,讨论c的取值范围,结合对数的性质求c的范围【详解】由,由,又,当时,,显然不成立;当时,,不成立;当时,;综上,.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)4.5(2)1000【解析】(1)把最大振幅和标准振幅直接代入公式M=lgA-lg求解;(2)利用对数式和指数式的互化由M=lgA-lg得A=,把M=8和M=5分别代入公式作比后即可得到答案试题解析:(1)因此,这次地震的震级为里氏4.5级.(2)由可得,即,当时,地震的最大振幅为;当时,地震的最大振幅为;所以,两次地震的最大振幅之比是:答:8级地震的最大振幅是5级地震的最大振幅的1000倍.考点:函数模型的选择与应用18、(1);(2).【解析】(1)解法①:讨论或,判断函数的单调性,利用零点存在性定理即可求解;解法②:将问题转化为在区间上有解,即e有解,讨论或解方程即可求解.(2)解法①:分离参数可得,令,,求出的最大值即可求解;解法②:不等式转化为恒成立,令,,可得函数,,讨论或即可求解.【详解】(1)解法①:当时,,没有零点;当时,函数是增函数,则需要,解得.,满足零点存在定理.因此函数在区间内有一个零点综上所述,的取值范围为.解法②:的零点就是方程的解,即在区间上有解方程变形得,当时,方程无解,当时,解为,则,解得,综上所述,的取值范围为(2)解法①由题意知,,即因为,则,又,令,,则(当且仅当时等号成立),所以,即的取值范围是.解法②由题意知,,即,令,,即,当时,显然不成立,因此.对于函数,,,则,解得,即m的取值范围是.19、(1)(2)【解析】(1)用数量积的坐标运算表示出,有,再由两角差的正弦公式化为一个三角函数式,最终求得;(2)化简,可直接去分母,注意求得结果后检验分母是否为0(本题解法),也可先化简已知式为,再变形得,由可得结论试题解析:(1)∵,∴,即,,,∵,,∴,∴(2)由题知:,整理得,∴,∴,∴或,而使,舍去,∴,∴考点:数量积坐标运算,两角和与差的正弦
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年浙江广厦建设职业技术大学单招职业技能笔试参考题库带答案解析
- 2026年湖南商务职业技术学院高职单招职业适应性考试备考试题带答案解析
- 2026年唐山职业技术学院高职单招职业适应性测试备考试题带答案解析
- 2026年智能排产项目公司成立分析报告
- 小升初题目及答案科学
- 2026年铜陵职业技术学院单招职业技能笔试参考题库带答案解析
- 基于物理的光照传播模拟方法
- 月球火山活动历史-第1篇
- 合伙租地协议书
- 2026年山西管理职业学院单招职业技能笔试模拟试题带答案解析
- 12-重点几何模型-手拉手模型-专题训练
- RPA财务机器人开发与应用 课件 项目二 RPA财务机器人基础UiPath认知
- PICC置管新技术及维护新进展
- 七年级上册道德与法治第1-4单元共4个单元复习教学设计
- 个人分红收款收据
- 内科学(广东药科大学)智慧树知到期末考试答案章节答案2024年广东药科大学
- 人教版数学五年级上册《多边形的面积》单元作业设计()
- 肾素血管紧张素系统药理
- 海南省职校技能大赛(植物病虫害防治赛项)参考试题库(含答案)
- 银屑病慢病管理
- 克拉玛依市克拉玛依区2023-2024学年七年级上学期期末数学强化卷(含答案)
评论
0/150
提交评论