上海市杨思高中2026届高二上数学期末统考模拟试题含解析_第1页
上海市杨思高中2026届高二上数学期末统考模拟试题含解析_第2页
上海市杨思高中2026届高二上数学期末统考模拟试题含解析_第3页
上海市杨思高中2026届高二上数学期末统考模拟试题含解析_第4页
上海市杨思高中2026届高二上数学期末统考模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市杨思高中2026届高二上数学期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,平行六面体中,与的交点为,设,则选项中与向量相等的是()A. B.C. D.2.如图,空间四边形OABC中,,,,点M在上,且满足,点N为BC的中点,则()A. B.C. D.3.已知等差数列的前项和为,,,,则的值为()A. B.C. D.4.曲线为四叶玫瑰线,这种曲线在苜蓿叶型立交桥的布局中有非常广泛的应用,苜蓿叶型立交桥有两层,将所有原来需要穿越相交道路的转向都由环形匝道来实现,即让左转车辆行驶环道后自右侧切向汇入高速公路,四条环形匝道就形成了苜蓿叶的形状.下列结论正确的个数是()①曲线C关于点(0,0)对称;②曲线C关于直线y=x对称;③曲线C的面积超过4π.A.0 B.1C.2 D.35.为比较甲、乙两地某月时的气温状况,随机选取该月中的天,将这天中时的气温数据(单位:℃)制成如图所示的茎叶图(十位数字为茎,个位数字为叶).考虑以下结论:①甲地该月时的平均气温低于乙地该月时的平均气温;②甲地该月时的平均气温高于乙地该月时的平均气温;③甲地该月时的气温的标准差小于乙地该月时的气温的标准差;④甲地该月时的气温的标准差大于乙地该月时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()A.①③ B.①④C.②③ D.②④6.曲线与曲线的()A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等7.离心率为,长轴长为6的椭圆的标准方程是A. B.或C. D.或8.在中,角,,所对的边分别为,,,若,则的形状为()A.锐角三角形 B.直角三角形C.钝角三角形 D.不确定9.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.双曲线的焦点坐标是()A. B.C. D.11.在直三棱柱中,底面是等腰直角三角形,,点在棱上,且,则与平面所成角的正弦值为()A. B.C. D.12.“,”的否定是A., B.,C., D.,二、填空题:本题共4小题,每小题5分,共20分。13.如图所示,直线是曲线在点处的切线,则__________.14.从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重复数字的四位数,这样的四位数一共有___________个.(用数字作答)15.,成立为真命题,则实数的取值范围______.16.已知正项等比数列的前n项和为,且,则的最小值为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)当时,求曲线在点(0,f(0))处的切线方程;(2)若存在,使得不等式成立,求m的取值范围18.(12分)已知点是圆:上任意一点,是圆内一点,线段的垂直平分线与半径相交于点(1)当点在圆上运动时,求点的轨迹的方程;(2)设不经过坐标原点,且斜率为的直线与曲线相交于,两点,记,的斜率分别是,.当,都存在且不为时,试探究是否为定值?若是,求出此定值;若不是,请说明理由19.(12分)如图甲,在直角三角形中,已知,,,D,E分别是的中点.将沿折起,使点A到达点的位置,且,连接,得到如图乙所示的四棱锥,M为线段上一点.(1)证明:平面平面;(2)过B,C,M三点的平面与线段A'E相交于点N,从下列三个条件中选择一个作为已知条件,求直线DN与平面A'BC所成角的正弦值.①;②直线与所成角的大小为;③三棱锥的体积是三棱锥体积的注:如果选择多个条件分别解答,按第一个解答计分.20.(12分)如图,在梯形中,,,平面,四边形为矩形,点为线段的中点,且(1)求证:平面平面;(2)若平面与平面所成锐二面角的余弦值为,则三棱锥F-ABC的体积为多少?21.(12分)已知椭圆)过点A(0,),且与双曲线有相同的焦点(1)求椭圆C的方程;(2)设M,N是椭圆C上异于A的两点,且满足,试判断直线MN是否过定点,并说明理由22.(10分)已知数列的首项,且满足.(1)求证:数列是等比数列;(2)求数列的前n项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用空间向量加减法、数乘的几何意义,结合几何体有,进而可知与向量相等的表达式.【详解】连接,如下图示:,.故选:B2、B【解析】由空间向量的线性运算求解【详解】由题意,又,,,∴,故选:B3、A【解析】由可求得,利用可构造方程求得.【详解】,,,,,解得:.故选:A.4、C【解析】根据图像或解析式即可判断对称性①②;估算第一象限内图像面积即可判断③.【详解】①将点(-x,-y)代入后依然为,故曲线C关于原点对称;②将点(y,x)代入后依然为,故曲线C关于y=x对称;③曲线C在四个象限的图像是完全相同的,不妨只研究第一象限的部分,∵,∴曲线C上离原点最远的点的距离为显然第一象限内曲线C的面积小于以为直径的圆的面积,又∵,∴第一象限内曲线C的面积小于,则曲线C的总面积小于4π.故③错误.故选:C.5、B【解析】根据茎叶图数据求出平均数及标准差即可【详解】由茎叶图知甲地该月时的平均气温为,标准差为由茎叶图知乙地该月时的平均气温为,标准差为则甲地该月14时的平均气温低于乙地该月14时的平均气温,故①正确,乙平均气温的标准差小于甲的标准差,故④正确,故正确的是①④,故选:B6、D【解析】分别求出两曲线表示的椭圆的位置,长轴长、短轴长、离心率和焦距,比较可得答案.【详解】曲线表示焦点在x轴上的椭圆,长轴长为10,短轴长为6,离心率为,焦距为8,曲线焦点在x轴上的椭圆,长轴长为,短轴长为,离心率为,焦距为,故选:D7、B【解析】试题解析:当焦点在x轴上:当焦点在y轴上:考点:本题考查椭圆的标准方程点评:解决本题的关键是焦点位置不同方程不同8、C【解析】由正弦定理得出,再由余弦定理得出,从而判断为钝角得出的形状.【详解】因为,所以,所以,所以的形状为钝角三角形.故选:C9、B【解析】根据充分条件和必要条件的概念即可判断.【详解】∵,∴“”是“”的必要不充分条件.故选:B.10、B【解析】根据双曲线的方程,求得,结合双曲线的几何性质,即可求解.【详解】由题意,双曲线,可得,所以,且双曲线的焦点再轴上,所以双曲线的焦点坐标为.故选:B.11、C【解析】取AC的中点M,过点M作,且使得,进而证明平面,然后判断出是与平面所成的角,最后求出答案.【详解】如图,取AC的中点M,因为,则,过点M作,且使得,则四边形BDNM是平行四边形,所以.由题意,平面ABC,则平面ABC,而平面ABC,所以,又,所以平面,而所以平面,连接DA,NA,则是与平面所成的角.而,于是,.故选:.12、D【解析】通过命题的否定的形式进行判断【详解】因为全称命题的否定是特称命题,故“,”的否定是“,”.故选D.【点睛】本题考查全称命题的否定,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】利用直线所过点求得直线的斜率,从而求得.【详解】由图象可知直线过,所以直线的斜率为,所以.故答案为:14、1296【解析】根据取出的数字是否含有零,分类讨论,若不含零,则有四位数个,若含有零,则有四位数个,再根据分类加法计数原理即可求出【详解】若取出的数字中不含零,则有四位数个;若取出的数字中含零,则有四位数个;所以,这样的四位数有个故答案为:129615、.【解析】根据题意转化为,恒成立,得到,即可求解.【详解】由题意,命题,成立为真命题,即,恒成立,当时,,所以,即实数的取值范围.故答案为:.16、16【解析】根据是等比数列,由,即可得也是等比数列,结合基本不等式的性质即可求出的最小值.【详解】是等比数列,,即,也是等比数列,且,,可得:,当且仅当时取等号,的最小值为16.故答案为:16三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用导数求出切线斜率,即可求出切线方程;(2)把题意转化为:存在,使得不等式成立,构造新函数,对m进行分类讨论,利用导数求,解不等式,即可求出m的范围.【小问1详解】当时,,定义域为R,.所以,.所以曲线在点(0,f(0))处的切线方程为:,即.【小问2详解】不等式可化为:,即存在,使得不等式成立.构造函数,则.①当时,恒成立,故在上单调递增,故,解得:,故;②当时,令,解得:令,解得:故在上单调递减,在上单调递增,又,故,解得:,这与相矛盾,舍去;③当时,恒成立,故在上单调递减,故,不符合题意,应舍去.综上所述:m的取值范围为:.18、(1);(2)是定值,.【解析】(1)根据给定条件探求得,再借助椭圆定义直接求得轨迹的方程.(2)设出直线的方程,再与轨迹的方程联立,借助韦达定理计算作答.【小问1详解】圆:的圆心,半径,因线段的垂直平分线与半径相交于点,则,而,于是得,因此,点的轨迹是以C,A为左右焦点,长轴长为4的椭圆,短半轴长有,所以轨迹的方程为.【小问2详解】依题意,设直线的方程为:,,由消去y并整理得:,,则且,设,则有,,因直线,的斜率,都存在且不为,因此,且,,,所以直线,的斜率,都存在且不为时,是定值,这个定值是.【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值19、(1)证明见解析(2)【解析】(1)由线面垂直的判定定理及面面垂直的判定定理可得证;(2)分别选①,②,③可求得为的中点,再以为坐标原点,向量的方向分别为轴,轴,轴建立空间直角坐标系.利用空间向量求得所求的线面角.【小问1详解】分别为的中点,.,,.,,平面.又平面,∴平面平面.【小问2详解】(2)选①,;,,,,为的中点.选②,直线与所成角的大小为;,∴直线与所成角为.又直线与所成角的大小为,,,为的中点.选③,三棱锥的体积是三棱锥体积的,又,即,为的中点.∵过三点的平面与线段相交于点平面,平面.又平面平面,,为的中点.两两互相垂直,∴以为坐标原点,向量的方向分别为轴,轴,轴的正方向,建立如图所示的空间直角坐标系.则;.设平面的一个法向量为,直线与平面所成的角为.由,得.令,得.则.∴直线与平面所成角的正弦值为.20、(1)证明见解析;(2)【解析】(1)先证线面垂直,再证面面垂直即可解决;(2)建立空间直角坐标系,以向量法去求平面与平面所成锐二面角的余弦值,列方程解得的长度,即可求得三棱锥F-ABC的体积.【小问1详解】在梯形中,,,,所以,,又,所以,所以,又所以,即又平面,平面,所以,又,,平面,所以平面,即平面又平面,则平面平面【小问2详解】由(1)知,,两两垂直,以为坐标原点,分别以直线,,为轴、轴、轴建立空间直角坐标系因为,,所以,令则,,,所以,设为平面的一个法向量,由,得解得,取,则,又是平面的一个法向量.设平面与平面所成锐二面角为,则,即解之得,又,故即21、(1)(2)直线过定点;理由见解析【解析】(1)根据题意可求得,进而求得椭圆方程;(2)考虑直线斜率是否存在,设直线方程并联立椭圆方程,得到根与系数的关系式,然后利用,将根与系数的关系式代入化简得到,结合直线方程,化简可得结论.【小问1详解】依题意,,所以,故椭圆方程为:【小问2详解】当直线MN的斜率不存在时,设M(),N(,),则,,此时M,N重合,不符合题意;当直线MN的斜率存在时,设MN的方程为:,M(,),N(),与椭圆方程联立可得:,即,∴,即,∴,∴,∴,当时,,直线MN:,即,令,则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论