山东省夏津县第一中学2026届高一上数学期末学业质量监测模拟试题含解析_第1页
山东省夏津县第一中学2026届高一上数学期末学业质量监测模拟试题含解析_第2页
山东省夏津县第一中学2026届高一上数学期末学业质量监测模拟试题含解析_第3页
山东省夏津县第一中学2026届高一上数学期末学业质量监测模拟试题含解析_第4页
山东省夏津县第一中学2026届高一上数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省夏津县第一中学2026届高一上数学期末学业质量监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知两个非零向量,满足,则下面结论正确的是A. B.C. D.2.函数的零点的个数为A. B.C. D.3.命题:,,则该命题的否定为()A., B.,C., D.,4.已如集合,,,则()A. B.C. D.5.如图,在棱长为1的正方体中,三棱锥的体积为()A. B.C. D.6.我国著名数学家华罗庚曾说:数缺形时少直观,形少数时难人微,数形结合百般好,割裂分家万事休.在数学的学习和研究中,有时可凭借函数的解析式琢磨函数图像的特征.如函数,的图像大致为()A. B.C. D.7.某几何体的正视图和侧视图均为如图1所示,则在图2的四个图中可以作为该几何体的俯视图的是A.(1),(3) B.(1),(4)C.(2),(4) D.(1),(2),(3),(4)8.已知函数,则该函数的零点位于区间()A. B.C. D.9.某甲、乙两人练习跳绳,每人练习10组,每组40个.每组计数的茎叶图如下图,则下面结论中错误的一个是()A.甲比乙的极差大B.乙的中位数是18C.甲的平均数比乙的大D.乙的众数是2110.在平行四边形中,设,,,,下列式子中不正确的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.用二分法研究函数f(x)=x3+3x-1的零点时,第一次经计算,可得其中一个零点x0∈(0,1),那么经过下一次计算可得x0∈___________(填区间).12.函数的定义域是______________13.若不等式对一切恒成立,则a的取值范围是______________.14.函数的单调减区间是_________.15.若函数在区间上有两个零点,则实数的取值范围是_______.16.在中,,则_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.甲地到乙地的距离大约为240,某汽车公司为测试一种新型号的汽车的耗油量与行驶速度的关系,进行了多次实地测试,收集到了该车型的每小时耗油量Q(单位:)与速度v(单位:)()的数据如下表:v0406080120Q0.0006.6678.12510.00020.000为了描述汽车每小时耗油量与速度的关系,现有以下三种模型供选择:①;②;③.(1)选出你认为最符合实际的函数模型,并说明理由;(2)从甲地到乙地,该型号的汽车应以什么速度行驶才能使总耗油量最少?18.将函数的图象向左平移个单位后得到函数的图象,设函数(1)求函数的最小正周期;(2)若对任意恒成立,求实数m的取值范围19.如图所示四棱锥中,底面,四边形中,,,,求四棱锥的体积;求证:平面;在棱上是否存在点异于点,使得平面,若存在,求的值;若不存在,说明理由20.如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点.(I)证明:AM⊥PM;(II)求二面角P-AM-D的大小.21.设函数.(1)求函数的最小正周期和对称轴方程;(2)求函数在上的最大值与最小值及相对应的的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】,所以,故选B考点:平面向量的垂直2、B【解析】略【详解】因为函数单调递增,且x=3,y>0,x=1,y<0,所以零点个数为13、B【解析】根据特称命题的否定可得出结论.【详解】由特称命题的否定可知,原命题的否定为:,.故选:B.【点睛】本题考查特称命题否定的改写,解题的关键就是弄清特称命题的否定与全称命题之间的关系,属于基础题.4、C【解析】根据交集和补集的定义可求.【详解】,故,故选:C.5、A【解析】用正方体的体积减去四个三棱锥的体积【详解】由,故选:A6、B【解析】根据题意求出函数的定义域并判断出函数的奇偶性,再代入特殊值点即可判断答案.【详解】由题意,函数定义域为,,于是排除AD,又,所以C错误,B正确.故选:B.7、A【解析】可以是一个正方体上面一个球,也可以是一个圆柱上面一个球8、B【解析】分别将选项中区间的端点代入,利用零点存在性定理判断即可【详解】由题,,,,所以,故选:B【点睛】本题考查利用零点存在性定理判断零点所在区间,属于基础题9、B【解析】通过茎叶图分别找出甲、乙的最大值以及最小值求出极差即可判断A;找出乙中间的两位数即可判断B;分别求出甲、乙的平均数判断C;观察乙中数据即可判断D;【详解】对于A,由茎叶图可知,甲的极差为,乙的极差为,故A正确;对于B,乙中间两位数为,故中位数为,故B错误;对于C,甲的平均数为,乙的平均数为,故C正确;对于D,乙组数据中出现次数最多为21,故D正确;故选:B【点睛】本题考查了由茎叶图估计样本数据的数字特征,属于基础题.10、B【解析】根据向量加减法计算,再进行判断选择.【详解】;;;故选:B【点睛】本题考查向量加减法,考查基本分析求解能力,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据零点存在性定理判断零点所在区间.【详解】,,所以下一次计算可得.故答案为:12、【解析】由题意可得,从而可得答案.【详解】函数的定义域满足即,所以函数的定义域为故答案为:13、【解析】先讨论时不恒成立,再根据二次函数的图象开口方向、判别式进行求解.【详解】当时,则化为(不恒成立,舍),当时,要使对一切恒成立,需,即,即a的取值范围是.故答案为:.14、##【解析】根据复合函数的单调性“同增异减”,即可求解.【详解】令,根据复合函数单调性可知,内层函数在上单调递减,在上单调递增,外层函数在定义域上单调递增,所以函数#在上单调递减,在上单调递增.故答案为:.15、【解析】由题意根据数形结合,只要,并且对称轴在之间,,解不等式组即可【详解】由题意,要使函数区间上有两个零点,只要,即,解得,故答案为【点睛】本题主要考查了二次函数的性质,函数零点的分布,关键是结合二次函数图象等价得到不等式组,常见的形式有考虑端点值处函数值的符号,对称轴与所给区间的关系,对称轴处函数值的符号等,属于中档题.16、【解析】先由正弦定理得到,再由余弦定理求得的值【详解】由,结合正弦定理可得,故设,,(),由余弦定理可得,故.【点睛】本题考查了正弦定理和余弦定理的运用,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最符合实际的模型为①,理由见解析(2)从甲地到乙地,该型号的汽车以80的速度行驶时能使总耗油量最少【解析】(1)根据定义域和单调性来判断;(2)根据行驶时间与单位时间的耗油量得到总耗油量的函数表达式,再求最小值的条件即可.【小问1详解】依题意,所选的函数必须满足两个条件:定义域为,且在区间上单调递增.由于模型③定义域不可能是.而模型②在区间上是减函数.因此,最符合实际的模型为①.【小问2详解】设从甲地到乙地行驶总耗油量为y,行驶时间为t,依题意有.∵,,∴,它是一个关于v的开口向上的二次函数,其对称轴为,且,∴当时,y有最小值.由题设表格知,当时,,,.∴从甲地到乙地,该型号的汽车以80km/h的速度行驶时能使总耗油量最少.18、(1)最小正周期是;(2)【解析】(1)根据图象平移计算方法求出的表达式,然后计算,再用周期公式求解即可;(2)换元令,结合自变量范围求得函数的值域,再根据不等式即可求出参数范围【详解】解:(1)依题意得则所以函数的最小正周期是;(2)令,因为,所以,则,,即由题意知,解得,即实数m的取值范围是【点睛】对于三角函数,求最小正周期和最值时可先把所给三角函数式化为或的形式,则最小正周期为,最大值为,最小值为或结合定义域求取最值19、(1)4;(2)见解析;(3)不存在.【解析】利用四边形是直角梯形,求出,结合底面,利用棱锥的体积公式求解即可求;先证明,,结合,利用线面垂直的判定定理可得平面;用反证法证明,假设存在点异于点使得平面证明平面平面,与平面与平面相交相矛盾,从而可得结论【详解】显然四边形ABCD是直角梯形,又底面平面ABCD,平面ABCD,在直角梯形ABCD中,,,,即又,平面;不存在,下面用反证法进行证明假设存在点异于点使得平面PAD,且平面PAD,平面PAD,平面PAD又,平面平面PAD而平面PBC与平面PAD相交,得出矛盾【点睛】本题考查直线与平面垂直的判定,棱锥的体积,平面与平面平行的判定定理,考查空间想象能力,逻辑推理能力.证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.20、(1)见解析;(2)45°.【解析】(Ⅰ)以D点为原点,分别以直线DA、DC为x轴、y轴,建立如图所示的空间直角坐标系,求出与的坐标,利用数量积为零,即可证得结果;(Ⅱ)求出平面PAM与平面ABCD的法向量,代入公式即可得到结果.【详解】(I)证明:以D点为原点,分别以直线DA、DC为x轴、y轴,建立如图所示的空间直角坐标系,依题意,可得∴∴即,∴AM⊥PM.(II)设,且平面PAM,则,即∴,取,得;取,显然平面ABCD,∴,结合图形可知,二面角P-AM-D为45°.【点睛】空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论