甘肃省靖远二中2026届数学高一上期末质量跟踪监视模拟试题含解析_第1页
甘肃省靖远二中2026届数学高一上期末质量跟踪监视模拟试题含解析_第2页
甘肃省靖远二中2026届数学高一上期末质量跟踪监视模拟试题含解析_第3页
甘肃省靖远二中2026届数学高一上期末质量跟踪监视模拟试题含解析_第4页
甘肃省靖远二中2026届数学高一上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省靖远二中2026届数学高一上期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是第三象限角,,则A. B.C. D.2.下列函数中,最小值是的是()A. B.C. D.3.已知角的终边经过点,则()A. B.C. D.4.已知函数,函数有四个不同的的零点,,,,且,则()A.a的取值范围是(0,) B.的取值范围是(0,1)C. D.5.已知平面直角坐标系中,点,,,、、,,是线段AB的九等分点,则()A.45 B.50C.90 D.1006.角终边经过点,那么()A. B.C. D.7.已知,,,则a,b,c的大小关系是A. B.C. D.8.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把郑铁饼者张开的双臂近似看成一张拉满弦的“弓”,郑铁饼者的手臂长约为米,肩宽约为米,“弓”所在圆的半径约为1.25米,则郑铁饼者双手之间的距离约为()A.1.01米 B.1.76米C.2.04米 D.2.94米9.已知,则、、的大小关系为()A. B.C. D.10.函数满足:为偶函数:在上为增函数若,且,则与的大小关系是A. B.C. D.不能确定二、填空题:本大题共6小题,每小题5分,共30分。11.已知定义在上的函数,满足不等式,则的取值范围是______12.已知sinα+cosα=,α∈(-π,0),则tanα=________.13.函数的定义域是____________.(用区间表示)14.已知扇形的圆心角为,扇形的面积为,则该扇形的弧长为____________.15.新冠疫情防控常态化,核酸检测应检尽检!核酸检测分析是用荧光定量PCR法,通过化学物质的荧光信号,对在PCR扩增进程中成指数级增加的靶标DNA实时检测,在PCR扩增的指数时期,荧光信号强度达到阈值时,DNA的数量与扩增次数n满足:,其中p为扩增效率,为DNA的初始数量.已知某被测标本DNA扩增8次后,数量变为原来的100倍,那么该标本的扩增效率p约为___________;该被测标本DNA扩增13次后,数量变为原来的___________倍.(参考数据:,,,,)16.若,是夹角为的两个单位向量,则,的夹角为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)求函数的最小正周期;(2)求函数的对称中心;(3)当时,求的最大值和最小值.18.已知点,,.(1)若,求的值;(2)若,其中为坐标原点,求的值.19.已知函数,且(1)求a的值;(2)判断在区间上的单调性,并用单调性的定义证明你的判断20.如图,在中,,,点在的延长线上,点是边上的一点,且存在非零实数,使.(Ⅰ)求与的数量积;(Ⅱ)求与的数量积.21.如图,在四棱锥P—ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)求异面直线PB与CD所成角的余弦值;(Ⅲ)求点A到平面PCD的距离.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用条件以及同角三角函数的基本关系、以及三角函数在各个象限中的符号,求得sinα的值【详解】∵α是第三象限角,tanα,sin2α+cos2α=1,得sinα,故选D【点睛】本题主要考查同角三角函数的基本关系、以及三角函数在各个象限中的符号,属于基础题2、B【解析】应用特殊值及基本不等式依次判断各选项的最小值是否为即可.【详解】A:当,则,,所以,故A不符合;B:由基本不等式得:(当且仅当时取等号),符合;C:当时,,不符合;D:当取负数,,则,,所以,故D不符合;故选:B.3、C【解析】根据任意角的三角函数的定义,求出,再利用二倍角公式计算可得.【详解】解:因为角的终边经过点,所以,所以故选:C4、D【解析】将问题转化为与有四个不同的交点,应用数形结合思想判断各交点横坐标的范围及数量关系,即可判断各选项的正误.【详解】有四个不同的零点、、、,即有四个不同的解的图象如下图示,由图知:,所以,即的取值范围是(0,+∞)由二次函数的对称性得:,因为,即,故故选:D【点睛】关键点点睛:将零点问题转化为函数交点问题,应用数形结合判断交点横坐标的范围或数量关系.第II卷5、B【解析】利用向量的加法以及数乘运算可得,再由向量模的坐标表示即可求解.【详解】,∴故选:B.6、C【解析】利用任意角的三角函数的定义,求得和的值,可得的值【详解】解:角终边上一点,,,则,故选:7、A【解析】根据对数函数的性质,确定的范围,即可得出结果.【详解】因为单调递增,所以,又,所以.故选A【点睛】本题主要考查对数的性质,熟记对数的性质,即可比较大小,属于基础题型.8、B【解析】先由题意求出“弓”所在的弧长所对的圆心角,然后利用三角函数求弦长【详解】由题意得,“弓”所在的弧长为,所以其所对的圆心角的绝对值为,所以两手之间的距离故选:B9、A【解析】借助中间量比较大小即可.【详解】解:因为,所以.故选:A10、A【解析】根据题意,由为偶函数可得函数的对称轴为,进而结合函数的单调性可得上为减函数,结合,且分析可得,据此分析可得答案【详解】根据题意,函数满足为偶函数,则函数的对称轴为,则有,又由在上为增函数,则在上为减函数,若,则,又由,则,则有,又由,则,故选A【点睛】本题考查函数的单调性与奇偶性的综合应用,涉及函数的对称性,属于中档题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】观察函数的解析式,推断函数的性质,借助函数性质解不等式【详解】令,则,得,即函数的图像关于中心对称,且单调递增,不等式可化为,即,得,解集为【点睛】利用函数解决不等式问题,关键是根据不等式构造适当的函数,通过研究函数的单调性等性质解决问题12、.【解析】由题意利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得和的值,可得的值.【详解】因为sinα+cosα=,①所以sin2α+cos2α+2sinαcosα=,即2sinαcosα=.因为α∈(-π,0),所以sinα<0,cosα>0,所以sinα-cosα=,与sinα+cosα=联立解得sinα=-,cosα=,所以tanα=.故答案为:.【点睛】该题考查的是有关三角函数恒等变换化简求值问题,涉及到的知识点有同角三角函数关系式,在解题的过程中,注意这三个式子是知一求二,属于简单题目.13、【解析】函数定义域为故答案为.14、【解析】利用扇形的面积求出扇形的半径,再带入弧长计算公式即可得出结果.【详解】解:由于扇形的圆心角为,扇形的面积为,则扇形的面积,解得:,此扇形所含的弧长.故答案为:.15、①.0.778②.1788【解析】①对数运算,由某被测标本DNA扩增8次后,数量变为原来的100倍,可以求出p;②由n=13,可以求数量是原来的多少倍.【详解】故答案为:①0.778;②1778.16、【解析】由题得,,再利用向量的夹角公式求解即得解.【详解】由题得,所以.所以,的夹角为.故答案为:【点睛】本题主要考查平面向量的模和数量积的计算,考查向量的夹角的计算,意在考查学生对这些知识的理解掌握水平.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最小正周期(2),(3),【解析】(1)利用两角和公式和二倍角公式对函数解析式化简整理,利用周期公式求得函数的最小正周期,利用三角函数图象和性质求得其对称轴方程(2)根据正弦函数的性质计算可得;(3)利用的范围求得的范围,再根据正弦函数的性质求出函数在区间上最大值和最小值【小问1详解】解:即所以的最小正周期为,【小问2详解】解:令,,解得,,所以函数的对称中心为,【小问3详解】解:当时,,所以则当,即时,;当,即时,18、(1);(2).【解析】(1)因为,,,所以,.因为所以,化简即可得的值;(2)因为,,所以,因为,所以,平方即可求得的值.试题解析:(1)因为,,,所以,.因为所以.化简得因为(若,则,上式不成立).所以.(2)因为,,所以,因,所以,所以,所以,,因为,所以,故.19、(1)4(2)在区间上单调递减,证明见解析【解析】(1)直接根据即可得出答案;(2)对任意,且,利用作差法比较的大小关系,即可得出结论.【小问1详解】解:由得,解得;【小问2详解】解:在区间内单调递减,证明:由(1)得,对任意,且,有,由,,得,,又由,得,于是,即,所以在区间上单调递减20、(Ⅰ)-18;(Ⅱ).【解析】(Ⅰ)在中由余弦定理得,从而得到三角形为等腰三角形,可得,由数量积的定义可得.(Ⅱ)根据所给的向量式可得点在的角平分线上,故可得,所以,因为,所以得到.设设,则得到,,根据数量积的定义及运算率可得所求试题解析:(Ⅰ)在中,由余弦定理得,所以,所以是等腰三角形,且,所以,所以(Ⅱ)由,得,所以点在的角平分线上,又因为点是边上的一点,所以由角平分线性质定理得,所以.因为,所以.设,则,由,得,所以,又,所以点睛:解题时注意在三角形中常见的向量与几何特征的关系:(1)在中,若或,则点是的外心;(2)在中,若,则点是的重心;(3)在中,若,则直线一定过的重心;(4)在中,若,则点是的垂心;(5)在中,若,则直线通过的内心.21、(1)同解析(2)异面直线PB与CD所成的角的余弦值为.(3)点A到平面PCD的距离d=【解析】解法一:(Ⅰ)证明:在△PAD卡中PA=PD,O为AD中点,所以PO⊥AD.又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO平面PAD,所以PO⊥平面ABCD.(Ⅱ)连结BO,在直角梯形ABCD中,BC∥AD,AD=2AB=2BC,有OD∥BC且OD=BC,所以四边形OBCD是平行四边形,所以OB∥DC.由(Ⅰ)知PO⊥OB,∠PBO为锐角,所以∠PBO是异面直线PB与CD所成的角.因AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,所以OB=,在Rt△POA中,因为AP=,AO=1,所以OP=1,在Rt△PBO中,PB=,cos∠PBO=,所以异面直线PB与CD所成的角的余弦值为.(Ⅲ)由(Ⅱ)得CD=OB=,在Rt△POC中,PC=,所以PC=CD=DP,S△PCD=·2=.又S△=设点A到平面PCD的距离h,由VP-ACD=VA-PCD,得S△ACD·OP=S△PCD·h,即×1×1=××h,解得h=.解法二:(Ⅰ)同解法一,(Ⅱ)以O为坐标原点,的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系O-xyz.则A(0,-1,0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论