版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省罗平二中2026届高二上数学期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线过点,则抛物线的焦点坐标为()A. B.C. D.2.已知、是平面直角坐标系上的直线,“与的斜率相等”是“与平行”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分条件也非必要条件3.曲线的离心率为()A. B.C. D.4.设命题,则为A. B.C. D.5.执行如图所示的程序框图,若输出的,则输入的可能为()A.9 B.5C.4 D.36.已知函数在处取得极值,则的极大值为()A. B.C. D.7.已知双曲线,过其右焦点作渐近线的垂线,垂足为,延长交另一条渐近线于点A.已知为原点,且,则()A. B.C. D.8.已知直线与平行,则的值为()A. B.C. D.9.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为A. B.C.2 D.10.已知F1(-1,0),F2(1,0)是椭圆的两个焦点,过F1的直线l交椭圆于M,N两点,若△MF2N的周长为8,则椭圆方程为()A. B.C. D.11.已知关于的不等式的解集是,则的值是()A. B.5C. D.712.若的解集是,则等于()A.-14 B.-6C.6 D.14二、填空题:本题共4小题,每小题5分,共20分。13.底面半径为1,母线长为2的圆锥的体积为______14.命题“若实数a,b满足,则且”是_______命题(填“真”或“假”).15.已知圆锥的侧面积为,若其过轴的截面为正三角形,则该圆锥的母线的长为___________.16.已知点P是双曲线右支上的一点,且以点P及焦点为定点的三角形的面积为4,则点P的坐标是_____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知首项为1的等比数列,满足(1)求数列的通项公式;(2)求数列的前n项和18.(12分)已知直线l经过两条直线2x﹣y﹣3=0和4x﹣3y﹣5=0交点,且与直线x+y﹣2=0垂直(1)求直线l的方程;(2)若圆C过点(1,0),且圆心在x轴的正半轴上,直线l被该圆所截得的弦长为,求圆C的标准方程19.(12分)如图,在四棱锥中,底面,,,,,为上一点,且.请用空间向量知识解答下列问题:(1)求证:平面;(2)求平面与平面夹角的大小.20.(12分)某市对排污水进行综合治理,征收污水处理费,系统对各厂一个月内排出的污水量x吨收取的污水处理费y元,运行程序如图所示:INPUTxIFTHENELSEIFTHENELSEENDIFENDIFPRINTyEND(1)请写出y与x的函数关系式;(2)求排放污水150吨的污水处理费用.21.(12分)在数列中,,,(1)设,证明:数列是等差数列;(2)求数列的前项和.22.(10分)已知圆内有一点,过点作直线交圆于、两点(1)当经过圆心时,求直线的方程;(2)当弦的长为时,求直线的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】把点代入抛物线方程求出,再化成标准方程可得解.【详解】因为抛物线过点,所以,所以抛物线方程为,方程化成标准方程为,故抛物线的焦点坐标为.故选:D.2、D【解析】根据直线平行与直线斜率的关系,即可求解.【详解】解:与的斜率相等”,“与可能重合,故前者不可以推出后者,若与平行,与的斜率可能都不存在,故后者不可以推出前者,故前者是后者的既非充分条件也非必要条件,故选:D.3、C【解析】由曲线方程直接求离心率即可.【详解】由题设,,,∴离心率.故选:C.4、C【解析】特称命题的否定为全称命题,所以命题的否命题应该为,即本题的正确选项为C.5、D【解析】根据输出结果可得输出时,结合执行逻辑确定输入k的可能值,即可知答案.【详解】由,得,则输人的可能为.∴结合选项知:D符合要求.故选:D.6、B【解析】首先求出函数的导函数,依题意可得,即可求出参数的值,从而得到函数解析式,再根据导函数得到函数单调性,即可求出函数的极值点,从而求出函数的极大值;【详解】解:因为,所以,依题意可得,即,解得,所以定义域为,且,令,解得或,令解得,即在和上单调递增,在上单调递减,即在处取得极大值,在处取得极小值,所以;故选:B7、C【解析】画出图象,结合渐近线方程得到,,进而得到,结合渐近线的斜率及角度关系,列出方程,求出,从而求出.【详解】渐近线为,如图,过点F作FB垂直于点B,交于点A,则到渐近线距离为,则,又,由勾股定理得:,则,又,,所以,解得:,所以.故选:C8、C【解析】由两直线平行可得,即可求出答案.【详解】直线与平行故选:C.9、A【解析】准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率【详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心,又点在圆上,,即,故选A【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来10、A【解析】由题得c=1,再根据△MF2N的周长=4a=8得a=2,进而求出b的值得解.【详解】∵F1(-1,0),F2(1,0)是椭圆的两个焦点,∴c=1,又根据椭圆的定义,△MF2N的周长=4a=8,得a=2,进而得b=,所以椭圆方程为.故答案为A【点睛】本题主要考查椭圆的定义和椭圆方程的求法,意在考查学生对这些知识的掌握水平和分析推理能力.11、D【解析】由题意可得的根为,然后利用根与系数的关系列方程组可求得结果【详解】因为关于的不等式的解集是,所以方程的根为,所以,得,所以,故选:D12、A【解析】由一元二次不等式的解集,结合根与系数关系求参数a、b,即可得.【详解】∵的解集为,∴-5和2为方程的两根,∴有,解得,∴.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先由勾股定理求圆锥的高,再结合圆锥的体积公式运算即可得解.【详解】解:设圆锥的高为,由勾股定理可得,由圆锥的体积可得,故答案为.【点睛】本题考查了圆锥的体积公式,重点考查了勾股定理,属基础题.14、假【解析】列举特殊值,判断真假命题.【详解】当时,,所以,命题“若实数a,b满足,则且”是假命题.故答案为:假15、【解析】利用圆锥的结构特征及侧面积公式即得.【详解】设圆锥的底面半径为r,圆锥的母线为l,又圆锥过轴的截面为正三角形,圆锥的侧面积为,∴,∴.故答案为:.16、【解析】由题可得P到x轴的距离为1,把代入,得,可得P点坐标【详解】设,由题意知,所以,则,由题意可得,把代入,得,所以P点坐标为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据已知条件求得数列的公比,由此求得.(2)利用错位相减求和法求得.【小问1详解】设等比数列的公比为,由,可得.故数列是以1为首项,3为公比的等比数列,所以【小问2详解】由(1)得,,①,②①②,得所以18、(1)(2)【解析】(1)先求得直线和直线的交点坐标,再用点斜式求得直线的方程.(2)设圆的标准方程为,根据已知条件列方程组,求得,由此求得圆的标准方程.【小问1详解】.直线的斜率为,所以直线的斜率为,所以直线的方程为.【小问2详解】设圆的标准方程为,则,所以圆的标准方程为.19、(1)证明见解析(2)【解析】(1)以为原点,、、分别为轴、轴、轴建立空间直角坐标系,证明出,,结合线面垂直的判定定理可证得结论成立;(2)利用空间向量法可求得平面与平面夹角的大小.【小问1详解】证明:底面,,故以为原点,、、分别为轴、轴、轴建立如图所示的空间直角坐标系,则、、、、、,所以,,,,则,,即,,又,所以,平面.【小问2详解】解:知,,,设平面的法向量为,则,,即,令,可得,设平面的法向量为,由,,即,令,可得,,因此,平面与平面夹角的大小为.20、(1);(2)1400(元).【解析】(1)根据已知条件即可容易求得函数关系式;(2)根据(1)中所求函数关系式,令,求得函数值即可.【小问1详解】根据题意,得:当时,;当时,;当时,.即.【小问2详解】因为,故,故该厂应缴纳污水处理费1400元.21、(1)略(2)【解析】(1)题中条件,而要证明的是数列是等差数列,因此需将条件中所给的的递推公式转化为的递推公式:,从而,,进而得证;(2)由(1)可得,,因此数列的通项公式可以看成一个等差数列与等比数列的乘积,故可考虑采用错位相减法求其前项和,即有:①,①得:②,②-①得.试题解析:(1)∵,,又∵,∴,,∴则是为首项为公差的等差数列;由(1)得,∴,∴①,①得:②,②-①得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年哈尔滨科学技术职业学院单招综合素质笔试模拟试题带答案解析
- 2026年邯郸职业技术学院单招职业技能笔试模拟试题带答案解析
- 土地租赁合规审查协议2025年版本
- 2026年北海职业学院单招职业技能考试参考题库带答案解析
- 2026年合肥幼儿师范高等专科学校单招职业技能笔试备考试题带答案解析
- 2026年河北旅游职业学院单招综合素质考试模拟试题带答案解析
- 2026年黑龙江商业职业学院单招职业技能考试备考试题带答案解析
- 停车场租赁合同2025年交通协议
- 碳资产评估服务协议2025年
- 2026年赣南卫生健康职业学院单招综合素质笔试备考试题带答案解析
- 《海南自由贸易港建设总体方案》解读
- 仓库安全管理台账模板
- GB/T 6730.46-2025铁矿石砷含量的测定蒸馏分离-砷钼蓝分光光度法
- 河南省省直辖县级行政区划济源市2024-2025学年八年级(上)期末物理试卷(含解析)
- 四川省医疗护理员考试题库及答案
- 物流新人开票培训
- 食品现场品鉴活动方案
- 护理管理学课程教学大纲
- 2026届天津市和平区物理八上期末调研模拟试题含解析
- 酒店餐饮合作方案(3篇)
- 肝硬化顽固性腹水护理查房
评论
0/150
提交评论