版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省常德市2026届数学高二上期末复习检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若双曲线(,)的焦距为,且渐近线经过点,则此双曲线的方程为()A. B.C. D.2.下列命题中,一定正确的是()A.若且,则a>0,b<0B.若a>b,b≠0,则>1C.若a>b且a+c>b+d,则c>dD.若a>b且ac>bd,则c>d3.抛物线的准线方程是()A. B.C. D.4.下列命题是真命题的个数为()①不等式的解集为②不等式的解集为R③设,则④命题“若,则或”为真命题A1 B.2C.3 D.45.下列语句为命题的是()A. B.你们好!C.下雨了吗? D.对顶角相等6.已知数列通项公式,则()A.6 B.13C.21 D.317.已知数据的平均数是,方差是4,则数据的方差是()A.3.4 B.3.6C.3.8 D.48.设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为8,则的焦距的最小值为()A.4 B.8C.16 D.329.在x轴与y轴上截距分别为,2的直线的倾斜角为()A.45° B.135°C.90° D.180°10.南北朝时期杰出的数学家祖冲之的儿子祖暅在数学上也有很多创造,其最著名的成就是祖暅原理:夹在两个平行平面之间的几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,现有一个圆柱体和一个长方体,它们的底面面积相等,高也相等,若长方体的底面周长为,圆柱体的体积为,根据祖暅原理,可推断圆柱体的高()A.有最小值 B.有最大值C.有最小值 D.有最大值11.“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件12.已知直线为抛物线的准线,直线经过抛物线的焦点,与抛物线交于点,则的最小值为()A. B.C.4 D.8二、填空题:本题共4小题,每小题5分,共20分。13.正四棱柱中,,,点为底面四边形的中心,点在侧面四边形的边界及其内部运动,若,则线段长度的最大值为__________14.下图是4个几何体的展开图,图①是由4个边长为3的正三角形组成;图②是由四个边长为3的正三角形和一个边长为3的正方形组成;图③是由8个边长为3的正三角形组成;图④是由6个边长为3的正方形组成若直径为4的球形容器(不计容器厚度)内有一几何体,则该几何体的展开图可以是______(填所有正确结论的番号)15.二项式的展开式中,项的系数为__________.16.已知椭圆的左、右焦点分别为,,上顶点为A,直线与椭圆C的另一个交点为B,则的面积为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题:“,”,命题:“,”,若“且”为真命题,求实数的取值范围18.(12分)已知在△ABC中,角A,B,C的对边分别为a,b,c,且(1)求C;(2)若,求的最大值19.(12分)已知函数(1)当时,讨论的单调性;(2)当时,证明20.(12分)已知函数,其中.(1)当时,求函数的单调性;(2)若对,不等式在上恒成立,求的取值范围.21.(12分)已知函数,.(1)若函数与在x=1处的切线平行,求函数在处的切线方程;(2)当时,若恒成立,求实数a的取值范围.22.(10分)已知函数,.(1)当时,求不等式的解集;(2)若在上恒成立,求取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据题意得到,,解得答案.【详解】双曲线(,)的焦距为,故,.且渐近线经过点,故,故,双曲线方程为:.故选:.【点睛】本题考查了双曲线方程,意在考查学生对于双曲线基本知识的掌握情况.2、A【解析】结合不等式的性质确定正确答案.【详解】A选项,若且,则,所以A选项正确.B选项,若,则,所以B选项错误.C选项,如,但,所以C选项错误.D选项,如,但,所以D选项错误.故选:A3、D【解析】将抛物线的方程化为标准方程,可得出该抛物线的准线方程.【详解】抛物线的标准方程为,则,可得,因此,该抛物线的准线方程为.故选:D.4、B【解析】举反例判断A,解一元二次不等式确定B,由导数的运算法则求导判断C,利用逆否命题判断D【详解】显然不是的解,A错;,B正确;,,C错;命题“若,则或”的逆否命题是:若且,则,是真命题,原命题也是真命题,D正确真命题个数2.故选:B5、D【解析】根据命题的定义判断即可.【详解】因为能够判断真假的语句叫作命题,所以ABC错误,D正确.故选:D6、C【解析】令即得解.【详解】解:令得.故选:C7、B【解析】利用方差的定义即可解得.【详解】由方差的定义,,则,所以数据的方差为:.故选:B8、B【解析】因为,可得双曲线的渐近线方程是,与直线联立方程求得,两点坐标,即可求得,根据的面积为,可得值,根据,结合均值不等式,即可求得答案.【详解】双曲线的渐近线方程是直线与双曲线的两条渐近线分别交于,两点不妨设为在第一象限,在第四象限联立,解得故联立,解得故面积为:双曲线其焦距为当且仅当取等号的焦距的最小值:故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.9、A【解析】按照斜率公式计算斜率,即可求得倾斜角.【详解】由题意直线过,设直线斜率为,倾斜角为,则,故.故选:A.10、C【解析】由条件可得长方体的体积为,设长方体的底面相邻两边分别为,根据基本不等式,可求出底面面积的最大值,进而求出高的最小值,得出结论.【详解】依题意长方体的体积为,设圆柱的高为长方体的底面相邻两边分别为,,当且仅当时,等号成立,.故选:C.【点睛】本题以数学文化为背景,考查基本不等式求最值,要认真审题,理解题意,属于基础题.11、B【解析】根据充分条件、必要条件的定义判断即可;【详解】解:由,得,反之不成立,如,,满足,但是不满足,故“”是“”的充分不必要条件故选:B12、D【解析】先求抛物线的方程,再联立直线方程和抛物线方程,由弦长公式可求的最小值.【详解】因为直线为抛物线的准线,故即,故抛物线方程为:.设直线,则,,而,当且仅当等号成立,故的最小值为8,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据正四棱柱的性质、矩形的性质,线面垂直的判定定理,结合勾股定理进行求解即可.【详解】当位于点时,因为是正方形,所以,由正四棱柱的性质可知,平面,因为平面,所以,因为平面,所以平面,平面,所以,因此当位于点时,满足题意,当点位于边点时,若,在矩形中,,因为,所以,因此,所以有,此时,又平面,所以平面,故点的轨迹在线段上,,所以线段长度的最大值为.故答案为:关键点睛:利用特殊点判断出点的轨迹是解题的关键.14、①【解析】根据几何体展开图可知①正四面体、②正四棱锥、③正八面体、④正方体,进而求其外接球半径,并与4比较大小,即可确定答案.【详解】若几何体外接球球心为,半径为,①由题设,几何体为棱长为3的正四面体,为底面中心,则,,所以,可得,即,满足要求;②由题设,几何体为棱长为3的正四棱锥,为底面中心,则,所以,可得,即,不满足要求;③由题设,几何体为棱长为3的正八面体,其外接球直径同棱长为3的正四棱锥,故不满足要求;④由题设,几何体为棱长为3的正方体,体对角线的长度即为外接球直径,所以,不满足要求;故答案为:①15、80【解析】利用二项式的通项公式进行求解即可.【详解】二项式的通项公式为:,令,所以项的系数为,故答案为:8016、【解析】求出直线的方程,联立方程,求得B点的坐标,从而可得出答案.【详解】解:由题意知,,,直线的方程为,联立方程组,解得,或,即,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、或【解析】先分别求出,为真时,的范围;再求交集,即可得出结果.【详解】若是真命题.则对任意恒成立,∴;若为真命题,则方程有实根,∴,解得或,由题意,真也真,∴或即实数的取值范围是或.18、(1);(2).【解析】(1)将题设条件化为,结合余弦定理即可知C的大小.(2)由(1)及正弦定理边角关系可得,再应用辅助角公式、正弦函数的性质即可求最大值.【小问1详解】由,得,即,由余弦定理得:,又,所以【小问2详解】由(1)知:,则,设△ABC外接圆半径为R,则,当时,取得最大值为19、(1)单调递减,在单调递增;(2)见解析.【解析】(1)求f(x)导数,讨论导数的正负即可求其单调性;(2)由于,则,只需证明,构造函数,证明其最小值大于0即可.【小问1详解】时,,当时,,∴,当时,,∴,∴在单调递减,在单调递增;【小问2详解】由于,∴,∴只需证明,令,则,∴在上为增函数,而,∴在上有唯一零点,且,当时,,g(x)单调递减,当时,,g(x)单调递增,∴的最小值为,由,得,则,∴,当且仅当时取等号,而,∴,∴,即,∴当时,.【点睛】本题考察了利用导数研究函数的单调性,也考察了利用导数研究函数的最值,解题过程中设计到隐零点的问题,需要掌握隐零点处理问题的常见思路和方法.20、(1)的单调递增区间为,,单调递减区间为,(2)【解析】(1)求导可得,分析正负即得解;(2)转化在上恒成立为,分析函数单调性,转化为f(1)≤1f(-1)≤1,求解即可【小问1详解】当时,令,解得,,当变化时,,的变化情况如下表:↘极小值↗极大值↘极小值↗所以的单调递增区间为,,单调递减区间为,【小问2详解】由条件可知,从而恒成立当时,;当时,因此函数在上的最大值是与两者中的较大者为使对任意的,不等式在上恒成立,当且仅当f(1)≤1f(-1)≤1即在上恒成立所以,因此满足条件的的取值范围是21、(1);(2).【解析】(1)求出函数的导数,利用切线平行求出a,即可求出切线方程;(2)先把已知条件转化为,令,,利用导数求出的最小值,即可求出实数a的取值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年广州中医药大学梅州医院(梅州市中医医院、梅州市田家炳医院)公开招聘聘用人员备考题库及参考答案详解1套
- 2026年包头轻工职业技术学院面向社会公开招聘工作人员9人的备考题库完整参考答案详解
- 2026年北仑区交通运输局编外人员公开招聘备考题库含答案详解
- 2026年中煤湖北地质局集团有限公司招聘备考题库及一套完整答案详解
- 2026年九江职业大学附属幼儿园教师招聘备考题库及参考答案详解一套
- 医保资金管理内控制度
- 药店医保刷卡内控制度
- 社区内控制度
- 高校科研外协费内控制度
- 学校事业单位内控制度
- 2025年-《中华民族共同体概论》课后习题答案-新版
- 苏少版(五线谱)(2024)八年级上册音乐全册教案
- 2025年龙江森工面试题及答案
- 2024-2025学年成都市高一上英语期末考试题(含答案和音频)
- 外观检验作业标准规范
- GB/T 308.1-2013滚动轴承球第1部分:钢球
- GB/T 18993.1-2020冷热水用氯化聚氯乙烯(PVC-C)管道系统第1部分:总则
- GA/T 798-2008排油烟气防火止回阀
- 中医舌、脉象的辨识与临床应用 点击吸下载
- 小沈阳《四大才子》欢乐喜剧人台词
- 国开电大员工招聘与配置(试题24道含答案)
评论
0/150
提交评论