林芝市重点中学2026届数学高二上期末联考试题含解析_第1页
林芝市重点中学2026届数学高二上期末联考试题含解析_第2页
林芝市重点中学2026届数学高二上期末联考试题含解析_第3页
林芝市重点中学2026届数学高二上期末联考试题含解析_第4页
林芝市重点中学2026届数学高二上期末联考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

林芝市重点中学2026届数学高二上期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线的倾斜角是A. B.C. D.2.在平面直角坐标系中,双曲线的右焦点为,过双曲线上一点作轴的垂线足为,若,则该双曲线的离心率为()A. B.C. D.3.音乐与数学有着密切的联系,我国春秋时期有个著名的“三分损益法”:以“宫”为基本音,“宫”经过一次“损”,频率变为原来的,得到“微”,“微”经过一次“益”,频率变为原来的,得到“商”……依此规律损益交替变化,获得了“宫”“微”“商”“羽”“角”五个音阶.据此可推得()A.“商”“羽”“角”的频率成公比为的等比数列B.“宫”“微”“商”的频率成公比为的等比数列C.“宫”“商”“角”的频率成公比为的等比数列D.“角”“商”“宫”的频率成公比为的等比数列4.已知,则下列不等式一定成立的是()A. B.C. D.5.已知,若,则()A. B.C. D.6.2021年是中国共产党百年华诞,3月24日,中宣部发布中国共产党成立100周年庆祝活动标识(图1),标识由党徽、数字“100”“1921”“2021”和56根光芒线组成,生动展现中国共产党团结带领中国人民不忘初心、牢记使命、艰苦奋斗的百年光辉历程.其中“100”的两个“0”设计为两个半径为的相交大圆,分别内含一个半径为1的同心小圆,且同心小圆均与另一个大圆外切(图2).已知,在两大圆的区域内随机取一点,则该点取自两大圆公共部分的概率为()A. B.C. D.7.已知直线与直线垂直,则实数()A.10 B.C.5 D.8.已知,则方程与在同一坐标系内对应的图形编号可能是()A.①④ B.②③C.①② D.③④9.如图,过拋物线的焦点的直线与拋物线交于两点,与其准线交于点(点位于之间)且于点且,则等于()A. B.C. D.10.设,为双曲线的上,下两个焦点,过的直线l交该双曲线的下支于A,B两点,且满足,,则双曲线的离心率为()A. B.C. D.11.①命题设“,若,则或”;②若“”为真命题,则p,q均为真命题;③“”是函数为偶函数的必要不充分条件;④若为空间的一个基底,则构成空间的另一基底;其中正确判断的个数是()A.1 B.2C.3 D.412.函数区间上有()A.极大值为27,极小值为-5 B.无极大值,极小值为-5C.极大值为27,无极小值 D.无极大值,无极小值二、填空题:本题共4小题,每小题5分,共20分。13.抛物线上的点到其焦点的最短距离为_________.14.已知向量,,若与垂直,则___________.15.在空间四边形ABCD中,AD=2,BC=2,E,F分别是AB,CD的中点,EF=,则异面直线AD与BC所成角的大小为____.16.设椭圆标准方程为,则该椭圆的离心率为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在数列中,,是与的等差中项,(1)求证:数列是等差数列(2)令,求数列的前项的和18.(12分)设a,b是实数,若椭圆过点,且离心率为.(1)求椭圆E的标准方程;(2)过椭圆E的上顶点P分别作斜率为,的两条直线与椭圆交于C,D两点,且,试探究过C,D两点的直线是否过定点?若过定点,求出定点坐标;否则,说明理由.19.(12分)已知三棱柱的侧棱垂直于底面,,,,,分别是,的中点.(Ⅰ)证明:平面;(Ⅱ)求二面角的余弦值.20.(12分)已知函数.(1)求函数在处的切线方程;(2)求函数在区间上的最大值与最小值.21.(12分)已知圆,直线(1)求证:直线与圆恒有两个交点;(2)设直线与圆的两个交点为、,求的取值范围22.(10分)如图,四棱锥中,是边长为2的正三角形,底面为菱形,且平面平面,,为上一点,满足.(1)证明:;(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由方程得到斜率,然后可得其倾斜角.【详解】因为直线的斜率为所以其倾斜角为故选:D2、A【解析】根据条件可知四边形为正方形,从而根据边长相等,列式求双曲线的离心率.【详解】不妨设在第一象限,则,根据题意,四边形为正方形,于是,即,化简得,解得(负值舍去).故选:A.3、C【解析】根据文化知识,分别求出相对应的频率,即可判断出结果【详解】设“宫”的频率为a,由题意经过一次“损”,可得“徵”的频率为a,“徵”经过一次“益”,可得“商”的频率为a,“商”经过一次“损”,可得“羽”频率为a,最后“羽”经过一次“益”,可得“角”的频率是a,由于a,a,a成等比数列,所以“宫、商、角”的频率成等比数列,且公比为,故选:C【点睛】本题考查等比数列的定义,考查学生的运算能力和转换能力及思维能力,属于基础题4、B【解析】运用不等式的性质及举反例的方法可求解.详解】对于A,如,满足条件,但不成立,故A不正确;对于B,因为,所以,所以,故B正确;对于C,因为,所以,所以不成立,故C不正确;对于D,因为,所以,所以,故D不正确.故选:B5、B【解析】先求出的坐标,然后由可得,再根据向量数量积的坐标运算求解即可.【详解】因为,,所以,因为,所以,即,解得.故选:B6、B【解析】求出两圆相交公共部分两个弓形面积,结合两圆面积可得概率【详解】如图,是两圆心,是两圆交点坐标,四边形边长均为,又,所以,所以,四边形是正方形,,弓形面积为,两个弓形面积为,两圆涉及部分面积为所以所求概率为故选:B7、B【解析】根据两直线垂直,列出方程,即可求解.【详解】由题意,直线与直线垂直,可得,解得.故选:B.8、B【解析】结合椭圆、双曲线、抛物线的图像,分别对①②③④分析m、n的正负,即可得到答案.【详解】对于①:由双曲线的图像可知:;由抛物线的图像可知:同号,矛盾.故①错误;对于②:由双曲线的图像可知:;由抛物线的图像可知:异号,符合要求.故②成立;对于③:由椭圆的图像可知:;由抛物线的图像可知:同号,且抛物线的焦点在x轴上,符合要求.故③成立;对于④:由椭圆的图像可知:;由抛物线的图像可知:同号,且抛物线的焦点在x轴上,矛盾.故④错误;故选:B9、B【解析】由题可得,然后结合条件可得,即求.【详解】设于点,准线交轴于点G,则,又,∴,又于点且,∴BE∥AD,∴,即,∴,∴等于.故选:B.10、A【解析】设,表示出,由勾股定理列式计算得,然后在,再由勾股定理列式,计算离心率.【详解】由题意得,,且,如图所示,设,由双曲线的定义可得,,因为,所以,得,所以,在中,,即.故选:A【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得(的取值范围)11、B【解析】利用逆否命题、含有逻辑联结词命题的真假性、充分和必要条件、空间基底等知识对四个判断进行分析,由此确定正确答案.【详解】①,原命题的逆否命题为“,若且,则”,逆否命题是真命题,所以原命题是真命题,①正确.②,若“”为真命题,则p,q至少有一个真命题,②错误.③,函数为偶函数的充要条件是“”.所以“”是函数为偶函数的充分不必要条件,③错误.④,若为空间的一个基底,即不共面,若共面,则存在不全为零的,使得,故,因为为空间的一个基底,,故,矛盾,故不共面,所以构成空间的另一基底,④正确.所以正确的判断是个.故选:B12、B【解析】求出得出的单调区间,从而可得答案.【详解】当时,,单调递减.当时,,单调递增.所以当时,取得极小值,极小值为,无极大值.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】设出抛物线上点的坐标,利用两点间距离公式建立函数关系,借助函数性质计算作答.【详解】抛物线的焦点,设点为抛物线上任意一点,于是有,当且仅当时取“=”,所以当,即点P为抛物线顶点时,取最小值1.故答案为:114、【解析】根据与垂直,可知,根据空间向量的数量积运算可求出的值,结合向量坐标求向量模的求法,即可得出结果.【详解】解:与垂直,,则,解得:,,则,.故答案为:.15、【解析】由已知找到异面直线所成角的平面角,再运用余弦定理可得答案.【详解】解:设BD的中点为O,连接EO,FO,所以,则∠EOF(或其补角)就是异面直线AD,BC所成的角的平面角,又因为EO=AD=1,FO=BC=,EF=.根据余弦定理得=-,所以∠EOF=150°,异面直线AD与BC所成角的大小为30°.故答案为:30°.16、##【解析】求出、的值,即可求得椭圆的离心率.【详解】在椭圆中,,,则,因此,该椭圆的离心率为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)求得,利用等差数列的定义可证得结论成立;(2)求出,可计算得出,利用并项求和法可求得数列的前项的和.小问1详解】解:由题意知是与的等差中项,可得,可得,则,可得,所以,,又由,可得,所以数列是首项和公差均为的等差数列.【小问2详解】解:由(1)可得:,,对任意的,,因此,.18、(1);(2)过定点,坐标为.【解析】(1)根据椭圆的离心率公式,结合代入法进行求解即可;(2)根据直线斜率公式和一元二次方程根与系数的关系进行求解即可.【小问1详解】因为椭圆离心率为,所以有.椭圆过点,所以,由可解:,所以该椭圆方程为:;【小问2详解】由(1)可知:,设直线的方程为:,若,由椭圆的对称性可知:,不符合题意,当时,直线的方程与椭圆方程联立得:,设,,,因为,所以,把代入得:,所以有或,解得:或,当时,直线,直线恒过定点,此时与点重合,不符合题意,当时,,直线恒过点,当直线不存在斜率时,此时,,因为,所以,两点不在椭圆上,不符合题意,综上所述:过C,D两点的直线过定点,定点坐标为.【点睛】关键点睛:根据一元二次方程根与系数关系是解题的关键.19、(1)见解析;(2).【解析】分析:依题意可知两两垂直,以点为原点建立空间直角坐标系,(1)利用直线的方向向量和平面的法向量垂直,即可证得线面平面;(2)求出两个平面的法向量,利用两个向量的夹角公式,即可求解二面角的余弦值.详解:依条件可知、、两两垂直,如图,以点为原点建立空间直角坐标系.根据条件容易求出如下各点坐标:,,,,,,,.(Ⅰ)证明:∵,,是平面的一个法向量,且,所以.又∵平面,∴平面;(Ⅱ)设是平面的法向量,因为,,由,得.解得平面的一个法向量,由已知,平面的一个法向量为,,∴二面角的余弦值是.点睛:本题考查了立体几何中的面面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.20、(1)(2),【解析】(1)根据导数的几何意义即可求解;(2)根据导数的正负判断f(x)的单调性,根据其单调性即可求最大值和最小值.【小问1详解】,切点为(1,-2),∵,∴切线斜率,切线方程为;【小问2详解】令,解得,1200极大值极小值2∵,,∴当时,,.21、(1)证明见解析(2)【解析】(1)根据直线的方程可得直线经过定点,而点到圆心的距离小于半径,故点在圆的内部,由此即可证明结果(2)由圆的性质可知,当过圆心时,取最大值,当和过的直径垂直时,取最小值,由此即可求出结果.【小问1详解】证明:由于直线,即令,解得,所以恒过点,所以,所以点在圆内,所以直线与圆恒有两个交点;【小问2详解】解:当过圆心时,取最大值,即圆的直径,由圆的半径,所以的最大值为;当和过的直径垂直时,取最小值,此时圆心到的距离,所以,故的最小值为综上,的取值范围.22、(1)证明见解析;(2).【解析】(1)设为中点,连接,根据,证明平面得到答案.(2)以为原点,,,分别为,,轴建

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论