2026届江西省赣州市于都二中数学高二上期末达标检测试题含解析_第1页
2026届江西省赣州市于都二中数学高二上期末达标检测试题含解析_第2页
2026届江西省赣州市于都二中数学高二上期末达标检测试题含解析_第3页
2026届江西省赣州市于都二中数学高二上期末达标检测试题含解析_第4页
2026届江西省赣州市于都二中数学高二上期末达标检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届江西省赣州市于都二中数学高二上期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设双曲线的实轴长为8,一条渐近线为,则双曲线的方程为()A. B.C. D.2.已知变量x,y具有线性相关关系,它们之间的一组数据如下表所示,若y关于x的线性回归方程为,则m=()x1234y0.11.8m4A.3.1 B.4.3C.1.3 D.2.33.在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做“等和数列”,这个数叫做数列的公和.已知等和数列{an}中,,公和为5,则()A.2 B.﹣2C.3 D.﹣34.已知等比数列的各项均为正数,公比,且满足,则()A.8 B.4C.2 D.15.已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,角终边上有一点,为锐角,且,则()A. B.C. D.6.2021年4月29日,中国空间站天和核心舱发射升空,这标志着中国空间站在轨组装建造全面展开,我国载人航天工程“三步走”战略成功迈出第三步.到今天,天和核心舱在轨已经九个多月.在这段时间里,空间站关键技术验证阶段完成了5次发射、4次航天员太空出舱、1次载人返回、1次太空授课等任务.一般来说,航天器绕地球运行的轨道近似看作为椭圆,其中地球的球心是这个椭圆的一个焦点,我们把椭圆轨道上距地心最近(远)的一点称作近(远)地点,近(远)地点与地球表面的距离称为近(远)地点高度.已知天和核心舱在一个椭圆轨道上飞行,它的近地点高度大约351km,远地点高度大约385km,地球半径约6400km,则该轨道的离心率为()A. B.C. D.7.若直线与圆只有一个公共点,则m的值为()A. B.C. D.8.已知圆与圆没有公共点,则实数a的取值范围为()A. B.C. D.9.在等差数列中,,,则数列的公差为()A.1 B.2C.3 D.410.如图,在正方体中,E为的中点,则直线与平面所成角的正弦值为()A. B.C. D.11.如图是正方体的平面展开图,在这个正方体中①与平行;②与是异面直线;③与成60°角;④与是异面直线以上四个结论中,正确结论的序号是A.①②③ B.②④C.③④ D.②③④12.已知命题,,则A., B.,C., D.,二、填空题:本题共4小题,每小题5分,共20分。13.设为第二象限角,若,则__________14.若,,,,与,,,,,,均为等差数列,则______15.已知空间向量,,若,则______16.在等比数列中,,则__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆,离心率为,短半轴长为1(1)求椭圆C的方程;(2)已知直线,问:在椭圆C上是否存在点T,使得点T到直线l的距离最大?若存在,请求出这个最大距离;若不存在,请说明理由18.(12分)设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为(1)求椭圆的方程;(2)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点且(为原点),求直线的斜率19.(12分)已知函数的两个极值点之差的绝对值为.(1)求的值;(2)若过原点的直线与曲线在点处相切,求点的坐标.20.(12分)已知数列满足,(1)证明是等比数列,(2)求数列的前项和21.(12分)已知函数(Ⅰ)讨论函数的极值点的个数(Ⅱ)若,,求的取值范围22.(10分)已知抛物线的焦点为,经过点的直线与抛物线交于两点,其中点A在第一象限;(1)若直线的斜率为,求的值;(2)求线段的长度的最小值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】双曲线的实轴长为,渐近线方程为,代入解析式即可得到结果.【详解】双曲线的实轴长为8,即,,渐近线方程为,进而得到双曲线方程为.故选:D.2、A【解析】先求得样本中心,代入回归方程,即可得答案.【详解】由题意得,又样本中心在回归方程上,所以,解得.故选:A3、C【解析】利用已知即可求得,再利用已知可得:,问题得解【详解】解:根据题意,等和数列{an}中,,公和为5,则,即可得,又由an﹣1+an=5,则,则3;故选C【点睛】本题主要考查了新概念知识,考查理解能力及转化能力,还考查了数列的周期性,属于中档题4、A【解析】根据是等比数列,则通项为,然后根据条件可解出,进而求得【详解】由为等比数列,不妨设首项为由,可得:又,则有:则故选:A5、C【解析】根据角终边上有一点,得到,再根据为锐角,且,求得,再利用两角差的正切函数求解.【详解】因为角终边上有一点,所以,又因为为锐角,且,所以,所以,故选:C6、A【解析】根据远地点和近地点,求出轨道即椭圆的半长轴和半焦距,即可求得答案.【详解】设椭圆的半长轴为a,半焦距为c.则根据题意得;解得,故该轨道即椭圆的离心率为,故选:A7、D【解析】利用圆心到直线的距离等于半径列方程,化简求得的值.【详解】圆的圆心为,半径为,直线与圆只有一个公共点,所以直线与圆相切,所以.故选:D8、B【解析】求出圆、的圆心和半径,再由两圆没有公共点列不等式求解作答.【详解】圆的圆心,半径,圆的圆心,半径,,因圆、没有公共点,则有或,即或,又,解得或,所以实数a的取值范围为.故选:B9、B【解析】将已知条件转化为的形式,由此求得.【详解】在等差数列中,设公差为d,由,,得,解得.故选:B10、D【解析】构建空间直角坐标系,求直线的方向向量、平面的法向量,应用空间向量的坐标表示,求直线与平面所成角的正弦值.【详解】以点D为坐标原点,向量分别为x,y,z轴建立空间直角坐标系,则,,,,可得,,,设面的法向量为,有,取,则,所以,,,则直线与平面所成角的正弦值为故选:D.11、C【解析】根据平面展开图可得原正方体,根据各点的分布逐项判断可得正确的选项.【详解】由平面展开图可得原正方体如图所示:由图可得:为异面直线,与不是异面直线,是异面直线,故①②错误,④正确.连接,则为等边三角形,而,故或其补角为与所成的角,因为,故与所成的角为,故③正确.综上,正确命题的序号为:③④.故选:C.【点睛】本题考查正方体的平面展开图,注意展开图中的点与正方体中的顶点的对应关系,本题属于容易题.12、A【解析】根据全称命题与特称命题互为否定的关系,即可求解,得到答案【详解】由题意,根据全称命题与特称命题的关系,可得命题,,则,,故选A【点睛】本题主要考查了含有一个量词的否定,其中解答中熟记全称命题与特称性命题的关系是解答的关键,着重考查了推理与运算能力,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求出,再利用二倍角公式求的值.【详解】因为为第二象限角,若,所以.所以.故答案为【点睛】本题主要考查同角三角函数的平方关系,考查二倍角的正弦公式,意在考查学生对这些知识的理解掌握水平,属于基础题.14、##【解析】由题意利用等差数列的定义和通项公式,求得要求式子的值【详解】设等差数列,,,,的公差为,等差数列,,,,,,的公差为,则有,且,所以,则,故答案为:15、7【解析】根据题意,结合空间向量的坐标运算,即可求解.【详解】根据题意,易知,因为,所以,即,解得故答案为:716、【解析】设等比数列的公比为,由题意可知和同号,结合等比中项的性质可求得的值.【详解】设等比数列的公比为,则,由等比中项的性质可得,因此,.故答案为:.【点睛】本题考查等比中项的计算,解题时不要忽略了对应项符号的判断,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在,最大距离为.,理由见解析【解析】(1)根据离心率及短轴长求椭圆参数,即可得椭圆方程.(2)根据直线与椭圆的位置关系,将问题转为平行于直线且与椭圆相切的切线与直线最大距离,设直线方程联立椭圆方程根据求参数,进而判断点T的存在性,即可求最大距离.【小问1详解】由题设知:且,又,∴,故椭圆C的方程为.小问2详解】联立直线与椭圆,可得:,∴,即直线与椭圆相离,∴只需求平行于直线且与椭圆相切的切线与直线最大距离即为所求,令平行于直线且与椭圆相切的直线为,联立椭圆,整理可得:,∴,可得,当,切线为,其与直线距离为;当,切线为,其与直线距离为;综上,时,与椭圆切点与直线距离最大为.18、(1)(2)或【解析】(1)根据已知条件求得,由此求得椭圆方程.(2)设出直线的方程,并与椭圆方程联立,求得点坐标,根据列方程,化简求得直线的斜率.【小问1详解】设椭圆的半焦距为,依题意,,又,可得,.所以,椭圆的方程为小问2详解】由题意,设.设直线的斜率为,又,则直线的方程为,与椭圆方程联立整理得,可得,代入得,进而直线的斜率.在中,令,得,所以直线的斜率为由,得,化简得,从而所以,直线的斜率为或19、(1);(2).【解析】(1)求,设的两根分别为,,由韦达定理可得:,,由题意知,进而可得的值;再检验所求的的值是否符合题意即可;(2)设,则,由列关于的方程,即可求得的值,进而可得的值,即可得点的坐标.【详解】由可得:设的两根分别为,,则,,由题意可知:,即,所以解得:,当时,,由可得或,由可得,所以在单调递增,在单调递减,在单调递增,所以为极大值点,为极小值点,满足两个极值点之差的绝对值为,符合题意,所以.(2)由(1)知,,设,则,由题意可得:,即,整理可得:,解得:或,因为即为坐标原点,不符合题意,所以,则,所以.20、(1)见解析;(2)【解析】(1)利用定义法证明是一个与n无关的非零常数,从而得出结论;(2)由(1)求出,利用分组求和法求【详解】(1)由得,所以,所以是首项为,公比为的等比数列,,所以,(2)由(1)知的通项公式为;则所以【点睛】本题主要考查等比数列的证明以及分组求和法,属于基础题21、(Ⅰ)答案见解析;(Ⅱ).【解析】(Ⅰ)求得,分,和三种情况讨论,求得函数的单调性,结合极值的概念,即可求解;(Ⅱ)由不等式,转化为当时,不等式恒成立,设,利用导数求得函数的单调性与最值,即可求解.【详解】(Ⅰ)由题意,函数的定义域为,且,当时,令,解得,令,解得或,故在上单调递减,在,上单调递增,所以有一个极值点;当时,令,解得或,令,得,故在,上单调递减,在上单调递增,所以有一个极值点;当时,上单调递增,在上单调递减,所以没有极值点综上所述,当时,有个极值点;当时,没有极值点.(Ⅱ)由,即,可得,即当时,不等式恒成立,设,则设,则因为,所以,所以在上单调递增,所以,所以在上单调递减,在上单调递增,所以,所以所以的取值范围是.【点睛】对于利用导数研究不等式的恒成立问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题3、根据恒成求解参数的取值时,一般涉及分类参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论