版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市高2026届高一数学第一学期期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数f(x)=的零点所在的一个区间是A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)2.命题“,是4倍数”的否定为()A.,是4的倍数 B.,不是4的倍数C.,不是4倍数 D.,不是4的倍数3.“函数在区间I上严格单调”是“函数在I上有反函数”的()A.充分非必要条件 B.必要非充分条件C.充分必要条件 D.既非充分又非必要条件4.下列区间中,函数单调递增的区间是()A. B.C. D.5.=(
)A. B.C. D.6.第24届冬季奥林匹克运动会,将于2022年2月4日~2月20日在北京和张家口联合举行.为了更好地安排志愿者工作,现需要了解每个志愿者掌握的外语情况,已知志愿者小明只会德、法、日、英四门外语中的一门.甲说,小明不会法语,也不会日语:乙说,小明会英语或法语;丙说,小明会德语.已知三人中只有一人说对了,由此可推断小明掌握的外语是()A.德语 B.法语C.日语 D.英语7.若过两点的直线的斜率为1,则等于()A. B.C. D.8.函数fx=lgA.0 B.1C.2 D.39.设函数f(x)=若,则实数的取值范围是()A.B.C.D.10.若,则的大小关系是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.关于的不等式的解集是________12.已知,则________.13.已知,若,使得,若的最大值为M,最小值为N,则___________.14.写出一个同时具有下列三个性质的函数:___________.①函数为指数函数;②单调递增;③.15.设,若函数在上单调递增,则的取值范围是A. B. C. D.16.函数单调递增区间为_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为持续推进“改善农村人居环境,建设宜居美丽乡村”,某村委计划在该村广场旁一矩形空地进行绿化.如图所示,两块完全相同的长方形种植绿草坪,草坪周围(斜线部分)均摆满宽度相同的花,已知两块绿草坪的面积均为400平方米.(1)若矩形草坪的长比宽至少多9米,求草坪宽的最大值;(2)若草坪四周及中间的花坛宽度均为2米,求整个绿化面积的最小值.18.已知集合,,.(1)求,(2)若,求实数a的取值范围19.定义在上的奇函数,已知当时,求实数a的值;求在上解析式;若存在时,使不等式成立,求实数m的取值范围20.已知△ABC中,A(2,-1),B(4,3),C(3,-2)(1)求BC边上的高所在直线的一般式方程;(2)求△ABC的面积21.已知集合A=x13≤log(1)求A,B;(2)求∁U(3)如果C=xx<a,且A∩C≠∅,求a
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】因为函数f(x)=2+3x在其定义域内是递增的,那么根据f(-1)=,f(0)=1+0=1>0,那么函数的零点存在性定理可知,函数的零点的区间为(-1,0),选B考点:本试题主要考查了函数零点的问题的运用点评:解决该试题的关键是利用零点存在性定理,根据区间端点值的乘积小于零,得到函数的零点的区间2、B【解析】根据特称量词命题的否定是全称量词命题即可求解【详解】因为特称量词命题的否定是全称量词命题,所以命题“,是4的倍数”的否定为“,不是4的倍数”故选:B3、A【解析】“函数在区间上单调”“函数在上有反函数”,反之不成立.即可判断出结论【详解】解:“函数在区间上严格单调”“函数在上有反函数”,下面给出证明:若“函数在区间上严格单调”,设函数在区间上的值域为,任取,如果在中存在两个或多于两个的值与之对应,设其中的某两个为,且,即,但因为,所以(或)由函数在区间上单调知:,(或),这与矛盾.因此在中有唯一的值与之对应.由反函数的定义知:函数在区间上存在反函数反之“函数在上有反函数”则不一定有“函数在区间上单调”,例如:函数,就存在反函数:易知函数在区间上并不单调综上,“函数在区间上严格单调”是“函数在上有反函数”的充分不必要条件.故选:A4、A【解析】解不等式,利用赋值法可得出结论.【详解】因为函数的单调递增区间为,对于函数,由,解得,取,可得函数的一个单调递增区间为,则,,A选项满足条件,B不满足条件;取,可得函数的一个单调递增区间为,且,,CD选项均不满足条件.故选:A.【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成形式,再求的单调区间,只需把看作一个整体代入的相应单调区间内即可,注意要先把化为正数5、A【解析】由题意可得:.本题选择A选项6、B【解析】根据题意,分“甲说对,乙、丙说错”、“乙说对,甲、丙说错”、“丙说对,甲、乙说错”三种情况进行分析,即可得到结果.【详解】若甲说对,乙、丙说错:甲说对,小明不会法语也不会日语;乙说错,则小明不会英语也不会法语;丙说错,则小明不会德语,由此可知,小明四门外语都不会,不符合题意;若乙说对,甲、丙说错:乙说对,则小明会英活或法语;甲说错,则小明会法语或日语;丙说错,小明不会德语;则小明会法语;若丙说对,甲、乙说错:丙说对,则小明会德语;甲说错,到小明会法语或日语;乙说错,则小明不会英语也不会法语;则小明会德语或日语,不符合题意;综上,小明会法语.故选:B.7、C【解析】根据斜率的计算公式列出关于的方程,由此求解出.【详解】因为,所以,故选:C.8、C【解析】在同一个坐标系下作出两个函数的图象即得解.【详解】解:在同一个坐标系下作出两个函数的图象如图所示,则交点个数为为2.故选:C9、C【解析】由于的范围不确定,故应分和两种情况求解.【详解】当时,,由得,所以,可得:,当时,,由得,所以,即,即,综上可知:或.故选:C【点睛】本题主要考查了分段函数,解不等式的关键是对的范围讨论,分情况解,属于中档题.10、C【解析】利用指数函数与对数函数的单调性,把各数与中间值0,1比较即得【详解】利用指数函数的单调性知:,即;利用指数函数的单调性知:,即;利用对数函数的单调性知:,即;所以故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】不等式,可变形为:,所以.即,解得或.故答案为.12、【解析】利用诱导公式化简等式,可求出的值,将所求分式变形为,在所得分式的分子和分母中同时除以,将所求分式转化为只含的代数式,代值计算即可.【详解】,,,因此,.故答案为:.【点睛】本题考查利用诱导公式和弦化切思想求值,解题的关键就是求出的值,考查计算能力,属于基础题.13、【解析】作出在上的图象,为的图象与直线y=m交点的横坐标,利用数形结合思想即可求得M和N﹒【详解】作出在上的图象(如图所示)因为,,所以当的图象与直线相交时,由函数图象可得,设前三个交点横坐标依次为、、,此时和最小为N,由,得,则,,,;当的图象与直线相交时,设三个交点横坐标依次为、、,此时和最大为,由,得,则,,;所以.故答案为:.14、(答案不唯一)【解析】根据给定条件①可得函数的解析式,再利用另两个条件判断作答.【详解】因函数是指数函数,则令,且,于是得,由于单调递增,则,又,解得,取,所以.故答案为:(答案不唯一)15、D【解析】由于函数为奇函数,且在上单调递增,结合函数的图象可知该函数的半周期大于或等于,所以,所以选择D考点:三角函数的图象与性质16、【解析】先求出函数的定义域,再利用求复合函数单调区间的方法求解即得.【详解】依题意,由得:或,即函数的定义域是,函数在上单调递减,在上单调递增,而在上单调递增,于是得在是单调递减,在上单调递增,所以函数的单调递增区间为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最大值为16米;(2)最小值为平方米.【解析】(1)设草坪的宽为x米,长为y米,依题意列出不等关系,求解即可;(2)表示,利用均值不等式,即得最小值.【详解】(1)设草坪的宽为x米,长为y米,由面积均为400平方米,得.因为矩形草坪的长比宽至少大9米,所以,所以,解得.又,所以.所以宽的最大值为16米.(2)记整个的绿化面积为S平方米,由题意可得(平方米)当且仅当米时,等号成立.所以整个绿化面积的最小值为平方米.18、(1);;(2).【解析】(1)解不等式化简集合B,再利用交集、并集、补集的定义直接计算作答.(2)由已知可得,再利用集合的包含关系列式计算作答.【小问1详解】解得:,则,而,所以,或,.【小问2详解】,因,则,于是得,所以实数a的取值范围是.19、(1);(2);(3).【解析】根据题意,由函数奇偶性的性质可得,解可得的值,验证即可得答案;当时,,求出的解析式,结合函数的奇偶性分析可得答案;根据题意,若存在,使得成立,即在有解,变形可得在有解设,分析的单调性可得的最大值,从而可得结果【详解】根据题意,是定义在上的奇函数,则,得经检验满足题意;故;根据题意,当时,,当时,,又是奇函数,则综上,当时,;根据题意,若存在,使得成立,即在有解,即在有解又由,则在有解设,分析可得在上单调递减,又由时,,故即实数m的取值范围是【点睛】本题考查函数的奇偶性的应用,以及指数函数单调性的应用,属于综合题20、(1)x+5y+3=0;(2)S△ABC=3【解析】求三角形一边的高所在的直线方程时,可利用点斜式求解,由于高线过三角形一个顶点,与对边垂直,借助垂直求出斜率,利用点斜式写出直线方程,已知三角形三个顶点的坐标求面积,最简单的方法是求出一边的长以及这边所在直线的方程,高线长利用点到直线的距离公式求出,从而求出面积.试题解析:(1)由斜率公式,得kBC=5,所以BC边上的高所在直线方程为y+1=-(x-2),即x+5y+3=0.(2)由两点间的距离公式,得|BC|=,BC边所在的直线方程为y+2=5(x-3),即5x-y-17=0,所以点A到直线BC的距离d=,故S△ABC=.【点睛】已知三角形三个顶点的坐标求面积,最简单的方法是求出一边的长以及这边所在直线的方程,高线长利用点到直线的距离公式求出,从而求出面积,还可求出三边长借助海伦公式去求;求三角形一边的高所在的直线方程时,可利用点斜式求解,由于高线过三角形一个顶点,与对边垂直,借助垂直求出斜率,利用点斜式写出直线方程.21、(1)A=2,8
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年保密知识竞赛试卷及答案(共六套)
- 医疗机构人力资源规划与实施效果
- 移动医疗在公共卫生事件中的应用
- 信息技术外包与合作伙伴管理制度
- 课件的导入教学课件
- 医疗卫生政策实施效果评价与反馈
- 课件的反思教学课件
- 核酸样本处理员培训课件
- 板书培训设计
- 《FZT 63039-2018高强聚乙烯编织线绳》专题研究报告
- 第二十二章 二次函数 章末复习试卷(含答案)2025-2026学年人教版数学九年级上册
- 分析包材采购岗位的挑战与机遇提供应对策略和建议
- 市场推广活动效果评估流程
- 2026年长沙民政职业技术学院单招职业技能考试题库必考题
- 工程伦理-形考任务二(权重20%)-国开(SX)-参考资料
- 部编版五年级上册语文第七单元教案
- 2025年行政管理学期末考试试题及答案
- 第一单元 小数除法(课件)数学北师大版五年级上册
- 2025年上海市松江区小升初英语试卷
- 江苏省南京市玄武区四校联考2024-2025学年上学期七年级期末数学试卷(含解析)
- 再生资源回收利用产业园区项目投资可行性研究报告
评论
0/150
提交评论