版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省宜昌市长阳县一中2026届高二上数学期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在三棱锥中,,则三棱锥外接球的表面积是()A. B.C. D.2.已知等差数列的公差,记该数列的前项和为,则的最大值为()A.66 B.72C.132 D.1983.下面三种说法中,正确说法的个数为()①如果两个平面有三个公共点,那么这两个平面重合;②两条直线可以确定一个平面;③若,,,则A.1 B.2C.3 D.04.若直线与双曲线相交,则的取值范围是A. B.C. D.5.将直线2x-y+λ=0沿x轴向左平移1个单位,所得直线与圆x2+y2+2x-4y=0相切,则实数λ值为()A.-3或7 B.-2或8C0或10 D.1或116.将上各点的纵坐标不变,横坐标变为原来的2倍,得到曲线C,若直线l与曲线C交于A,B两点,且AB中点坐标为M(1,),那么直线l的方程为()A. B.C. D.7.已知向量,,且与互相垂直,则()A. B.C. D.8.在空间直角坐标系中,已知点M是点在坐标平面内的射影,则的坐标是()A. B.C. D.9.如图,用4种不同的颜色对A,B,C,D四个区域涂色,要求相邻的两个区域不能用同一种颜色,则不同的涂色方法有()A.24种 B.48种C.72种 D.96种10.惊艳全世界的南非双曲线大教堂是由伦敦著名的建筑事务所完成的,建筑师的设计灵感源于想法:“你永无止境的爱是多么的珍贵,人们在你雄伟的翅膀下庇护”.若将如图所示的双曲线大教堂外形弧线的一段近似看成双曲线()下支的一部分,且此双曲线的一条渐近线方程为,则此双曲线的离心率为()A. B.C. D.11.已知函数与,则它们的图象交点个数为()A.0 B.1C.2 D.不确定12.双曲线的渐近线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列的前n项和为,,则___________.14.若数列满足,则称为“追梦数列”.已知数列为“追梦数列”,且,则数列的通项公式__________.15.总书记在2021年2月25日召开的全国脱贫攻坚总结表彰大会上发表重要讲话,庄严宣告,在迎来中国共产党成立一百周年的重要时刻,我国脱贫攻坚取得了全面胜利.在脱贫攻坚过程中,为了解某地农村经济情况,工作人员对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下列结论中所存确结论的序号是____________①该地农户家庭年收入低于4.5万元的农户比率估计为6%;②该地农户家庭年收入不低于10.5万元的农户比率估计为10%;③估计该地农户家庭年收入的平均值不超过6.5万元;④估计该地有一半以上农户,其家庭年收入介于4.5万元至8.5万元之间16.已知抛物线C:,经过点P(4,1)的直线l与抛物线C相交于A,B两点,且点P恰为AB的中点,F为抛物线的焦点,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列满足,,的前项和为.(1)求及;(2)令,求数列的前项和.18.(12分)已知函数.(1)求曲线在处的切线方程;(2)求曲线过点的切线方程.19.(12分)已知抛物线:上的点到焦点的距离为(1)求抛物线的方程;(2)设纵截距为的直线与抛物线交于,两个不同的点,若,求直线的方程20.(12分)已知抛物线的焦点与曲线的右焦点重合.(1)求抛物线的标准方程;(2)若抛物线上的点满足,求点的坐标.21.(12分)在平面直角坐标系中,有一条长度为3的线段,端点,分别在轴、轴上运动,为线段上一点,且.(1)求点的轨迹的方程;(2)已知不过原点的直线与相交于,两点,且线段始终被直线平分.求的面积取最大时直线的方程.22.(10分)已知椭圆E:的离心率,且右焦点到直线的距离为.(1)求椭圆的标准方程;(2)四边形的顶点在椭圆上,且对角线,过原点,若,证明:四边形的面积为定值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意,将该几何体放置于正方体中截得,进而转化为求边长为2的正方体的外接球,再求解即可.【详解】解:因为在三棱锥中,,所以将三棱锥补形成正方体如图所示,正方体的边长为2,则体对角线长为,外接球的半径为,所以外接球的表面积为,故选:.2、A【解析】根据等差数列的公差,求得其通项公式求解.【详解】因为等差数列的公差,所以,则,所以,由,得,所以或12时,该数列的前项和取得最大值,最大值为,故选:A3、A【解析】对于①,有两种情况,对于②考虑异面直线,对于③根据线面公理可判断.【详解】如果两个平面有三个公共点,那么这两个平面重合或者是相交,故①不正确;两条异面直线不能确定一个平面,故②不正确;若,,,可知必在交线上,则,故③正确;综上所述只有一个说法是正确的.故选:A4、C【解析】联立直线和双曲线的方程得到,即得的取值范围.【详解】联立直线和双曲线的方程得当,即时,直线和双曲线的渐近线重合,所以直线与双曲线没有公共点.当,即时,,解之得.故选:C.【点睛】本题主要考查直线和双曲线的位置关系,意在考查学生对这些知识的掌握水平和分析推理能力.5、A【解析】根据直线平移的规律,由直线2x﹣y+λ=0沿x轴向左平移1个单位得到平移后直线的方程,然后因为此直线与圆相切得到圆心到直线的距离等于半径,利用点到直线的距离公式列出关于λ的方程,求出方程的解即可得到λ的值解:把圆的方程化为标准式方程得(x+1)2+(y﹣2)2=5,圆心坐标为(﹣1,2),半径为,直线2x﹣y+λ=0沿x轴向左平移1个单位后所得的直线方程为2(x+1)﹣y+λ=0,因为该直线与圆相切,则圆心(﹣1,2)到直线的距离d==r=,化简得|λ﹣2|=5,即λ﹣2=5或λ﹣2=﹣5,解得λ=﹣3或7故选A考点:直线与圆的位置关系6、A【解析】先根据题意求出曲线C的方程,然后利用点差法求出直线l的斜率,从而可求出直线方程【详解】设点为曲线C上任一点,其在上对应在的点为,则,得,所以,所以曲线C的方程为,设,则,两方程相减整理得,因为AB中点坐标为M(1,),所以,即,所以,所以,所以直线l的方程为,即,故选:A7、D【解析】根据垂直关系可得,由向量坐标运算可构造方程求得结果.【详解】,,又与互相垂直,,解得:.故选:D.8、C【解析】点在平面内的射影是坐标不变,坐标为0的点.【详解】点在坐标平面内的射影为,故点M的坐标是故选:C9、B【解析】按涂色顺序进行分四步,根据分步乘法计数原理可得解.【详解】按涂色顺序进行分四步:涂A部分时,有4种涂法;涂B部分时,有3种涂法;涂C部分时,有2种涂法;涂D部分时,有2种涂法.由分步乘法计数原理,得不同的涂色方法共有种.故选:B.10、B【解析】首先根据双曲线的渐近线方程得到,从而得到,,,再求离心率即可.【详解】双曲线,,,因为双曲线的一条渐近线方程为,即,所以,解得,所以,,,.故选:B11、B【解析】令,判断的单调性并计算的极值,根据极值与0的大小关系判断的零点个数,得出答案.【详解】令,则,由,得,∴当时,,当时,.∴当时,取得最小值,∴只有一个零点,即与的图象只有1个交点.故选:B.12、B【解析】把双曲线的标准方程中的1换成0,可得其渐近线的方程【详解】双曲线的渐近线方程是,即,故选B【点睛】本题考查了双曲线的标准方程与简单的几何性质等知识,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、36【解析】根据等比数列下标和性质得到,再根据等差数列前项和公式计算可得;【详解】解:因,所以,所以;故答案为:14、##【解析】根据题意,由“追梦数列”的定义可得“追梦数列”是公比为的等比数列,进而可得若数列为“追梦数列”,则为公比为3的等比数列,进而由等比数列的通项公式可得答案【详解】根据题意,“追梦数列”满足,即,则数列是公比为的等比数列.若数列为“追梦数列”,则.故答案为:.15、①②④【解析】利用频率分布直方图中频率的求解方法,通过求解频率即可判断选项①,②,④,利用平均值的计算方法,即可判断选项③【详解】解:对于①,该地农户家庭年收入低于4.5万元的农户比率为,故选项①正确;对于②,该地农户家庭年收入不低于10.5万元的农户比率为,故选项②正确;对于③,估计该地农户家庭年收入的平均值为万元,故选项③错误;对于④,家庭年收入介于4.5万元至8.5万元之间的频率为,故估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间,故选项④正确故答案为:①②④16、9【解析】过A、、作准线的垂线且分别交准线于点、、,根据抛物线的定义可知,由梯形的中位线的性质得出,进而可求出的结果.【详解】由抛物线,可知,则,所以抛物线的焦点坐标为,如图,过点A作垂直于准线交准线于,过点作垂直于准线交准线于,过点作垂直于准线交准线于,由抛物线的定义可得,再根据为线段的中点,而四边形为梯形,由梯形的中位线可知,则,所以.故答案为:9.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)根据等差数列的通项公式及已知条件,,解方程组可得,,进而可得等差数列的通项公式,再利用等差数列的前项和公式可得;(2)将数列的通项公式代入可得的通项公式,利用错位相减法求和可得结果.【详解】(1)设等差数列的首项为,公差为,由于,,所以,,解得,,所以,;(2)因为,所以,故,,两式相减得,所以.【点睛】本题的核心是考查错位相减求和.一般地,如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{bn}的公比,然后作差求解.18、(1);(2).【解析】(1)首先求导函数,计算,接着根据导数的几何意义确定切线的斜率,最后根据点斜式写出直线方程即可;(2)因为点不在曲线上,所以设切点为,根据导数的几何意义写出切线的方程,代入点求解,最后写出切线方程即可.【详解】(1).,.所以曲线在处的切线方程为,即(2)设切点为,则曲线在点处的切线方程为,代入点得,,.所以曲线过点的切线方程为,即.19、(1);(2)【解析】(1)利用抛物线的性质即可求解.(2)设直线方程,与抛物线联立,利用韦达定理,即可求解.【详解】(1)由题设知,抛物线的准线方程为,由点到焦点的距离为,得,解得,所以抛物线的标准方程为(2)设,,显然直线的斜率存在,故设直线的方程为,联立消去得,由得,即所以,又因为,,所以,所以,即,解得,满足,所以直线的方程为20、(1);(2)或.【解析】(1)求出双曲线的右焦点坐标,可求出的值,即可得出抛物线的标准方程;(2)设点,由抛物线的定义求出的值,代入抛物线的方程可求得的值,即可得出点的坐标.【详解】(1)由双曲线方程可得,,所以,解得.则曲线的右焦点为,所以,.因此,抛物线的标准方程为;(2)设,由抛物线的定义及已知可得,解得.代入抛物线方程可得,解得,所以点的坐标为或.21、(1)(2)【解析】(1)设,根据题意可得,,利用两点之间的距离公式表示出,化简即可得出结果;(2)设,,线段的中点为,利用两点坐标表示直线斜率的公式和点差法求出直线的斜率,设的方程为,联立椭圆方程并消去y得到关于x的一元二次方程,根据韦达定理表示、进而得出弦长,利用点到直线的距离公式求出原点到的距离,结合基本不等式计算即可.【小问1详解】设,由为线段上一点,且,得,,又,则,整理可得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 股权投资回购协议书范本
- 2026年许昌职业技术学院高职单招职业适应性测试模拟试题带答案解析
- 2025-2030危险品运输途中泄露监测装置功能测试方案
- 2025-2030卫星遥感影像解译技术市场应用现状及城乡规划投资报告
- 2025-2030医疗器械第三方服务市场发展与商业模式创新报告
- 2025-2030区块链技术在供应链溯源中的应用行业市场现状与发展规划分析研究
- 2026年兴安职业技术学院高职单招职业适应性考试模拟试题带答案解析
- 2025-2030制造业3D打印设备市场供需分析投资评估规划研究分析研究报告
- 2025-2030制药行业市场深度挖掘药剂调研及临床试验与未来前景深度报告
- 2025-2030制冷设备行业市场供需能耗分析及投资节能环保规划
- 金属加工工艺规划
- 送你一朵小红花评语
- 2025至2030中国IT培训行业项目调研及市场前景预测评估报告
- 2025年国家开放大学《普通心理学(研究生)》期末考试参考题库及答案解析
- 多联机空调安装施工方案
- 2025秋期版国开河南电大专科《公务员制度讲座》一平台我要考试无纸化考试试题及答案
- 2025年三亚塑料包装材料项目可行性研究报告
- 2025年证券从业资格考试试卷及参考答案
- 2025贵州铜仁市公开招聘专业化管理村党组织书记43人考试参考题库及答案解析
- 菏泽在线食品安全培训课件
- 小数四则混合运算专项练习276题(有答案)
评论
0/150
提交评论