版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省曲靖市宣威五中第八中学2026届数学高一上期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数图象一定过点A.(0,1) B.(1,0)C.(0,3) D.(3,0)2.已知为等差数列,为的前项和,且,,则公差A. B.C. D.3.已知数列是首项,公比的等比数列,且,,成等差数列,则公比等于()A. B.C. D.4.函数的图像大致为A. B.C. D.5.若,则下列说法正确的是()A.若,则 B.若,则C.若且,则 D.若,则6.已知函数,,则的零点所在的区间是A. B.C. D.7.设集合,则()A.(1,2] B.[3,+∞)C.(﹣∞,1]∪(2,+∞) D.(﹣∞,1]∪[3,+∞)8.已知,,,则a,b,c的大小关系为()A. B.C. D.9.下列函数中,既是偶函数又在区间上单调递减的是A. B.C. D.10.已知函数,若关于的方程有四个不同的实数解,且满足,则下列结论正确的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数(且)在上单调递减,且关于的方程恰有两个不相等的实数解,则的取值范围是_____12.函数的值域为,则实数a的取值范围是______13.已知,函数,若,则______,此时的最小值是______.14.某商厦去年1月份的营业额为100万元.如果该商厦营业额的月增长率为1%,则商厦的月营业额首次突破110万元是在去年的___________月份.15.我国古代数学名著《九章算术》中相当于给出了已知球的体积V,求其直径d的一个近似公式.规定:“一个近似数与它准确数的差的绝对值叫这个近似数的绝对误差.”如果一个球体的体积为,那么用这个公式所求的直径d结果的绝对误差是___________.(参考数据:,结果精确到0.01)16.某扇形的圆心角为2弧度,周长为4cm,则该扇形面积为_____cm2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求的最小正周期;(2)设,求的值域和单调递减区间18.我国所需的高端芯片很大程度依赖于国外进口,“缺芯之痛”关乎产业安全、国家经济安全.如今,我国科技企业正在芯片自主研发之路中不断崛起.根据市场调查某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设该公司一年内共生产该款手机万部并全部销售完,每万部的销售收入为万美元,且当该公司一年内共生产该款手机2万部并全部销售完时,年利润为704万美元.(1)写出年利润(万美元)关于年产量(万部)的函数解析式:(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.19.设a∈R,是定义在R上的奇函数,且.(1)试求的反函数的解析式及的定义域;(2)设,若时,恒成立,求实数k的取值范围.20.已知集合,(1)分别求,;(2)已知,若,求实数的取值集合21.定义:若函数的定义域为D,且存在非零常数,对任意,恒成立,则称为线周期函数,为的线周期.(1)下列函数(其中表示不超过x的最大整数),是线周期函数的是____________(直接填写序号);(2)若为线周期函数,其线周期为,求证:为周期函数;(3)若为线周期函数,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据过定点,可得函数过定点.【详解】因为在函数中,当时,恒有,函数的图象一定经过点,故选C.【点睛】本题主要考查指数函数的几何性质,属于简单题.函数图象过定点问题主要有两种类型:(1)指数型,主要借助过定点解答;(2)对数型:主要借助过定点解答.2、A【解析】分析:先根据已知化简即得公差d.详解:由题得4+4+d+4+2d=6,所以d=.故答案为A.点睛:本题主要考查等差数列的前n项和和等差数列的通项,意在考查学生对这些基础知识的掌握水平.3、A【解析】由等差数列性质得,由此利用等比数列通项公式能求出公比【详解】数列是首项,公比的等比数列,且,,成等差数列,,,解得(舍或故选A【点睛】本题考查等比数列的公比的求法,是基础题,解题时要认真审题,注意等差数列和等比数列的性质的合理运用4、A【解析】详解】由得,故函数的定义域为又,所以函数为奇函数,排除B又当时,;当时,.排除C,D.选A5、D【解析】根据选项举反例即可排除ABC,结合不等式性质可判断D【详解】对A,取,则有,A错;对B,取,则有,B错;对C,取,则有,C错;对D,若,则正确;故选:D6、C【解析】由题意结合零点存在定理确定的零点所在的区间即可.【详解】由题意可知函数在上单调递减,且函数为连续函数,注意到,,,,结合函数零点存在定理可得的零点所在的区间是.本题选择C选项.【点睛】应用函数零点存在定理需要注意:一是严格把握零点存在性定理的条件;二是连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分条件,而不是必要条件;三是函数f(x)在(a,b)上单调且f(a)f(b)<0,则f(x)在(a,b)上只有一个零点.7、C【解析】由题意分别计算出集合的补集和集合,然后计算出结果.【详解】解:∵A=(1,3),∴=(﹣∞,1]∪[3,+∞),∵,∴x﹣2>0,∴x>2,∴B=(2,+∞),∴(﹣∞,1]∪(2,+∞),故选:C8、D【解析】利用指数函数和对数函数的单调性求解.【详解】因为,,,所以,故选:D9、C【解析】因为函数是奇函数,所以选项A不正确;因为函为函数既不是奇函数,也不是偶函数,所以选项B不正确;函数图象抛物线开口向下,对称轴是轴,所以此函数是偶函数,且在区间上单调递减,所以,选项C正确;函数虽然是偶函数,但是此函数在区间上是增函数,所以选项D不正确;故选C考点:1、函数的单调性与奇偶性;2、指数函数与对数函数;3函数的图象10、D【解析】先作函数和的图象,利用特殊值验证A错误,再结合对数函数的性质及二次函数的对称性,计算判断BCD的正误即可.【详解】作函数和的图象,如图所示:当时,,即,解得,此时,故A错误;结合图象知,,当时,可知是方程,即的二根,故,,端点取不到,故BC错误;当时,,即,故,即,所以,故,即,所以,故D正确.故选:D.【点睛】方法点睛:已知函数有零点个数求参数值(取值范围)或相关问题,常先分离参数,再作图象,将问题转化成函数图象的交点问题,利用数形结合法进行分析即可.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用函数是减函数,根据对数的图象和性质判断出的大致范围,再根据为减函数,得到不等式组,利用函数的图象,方程的解的个数,推出的范围【详解】函数(且),在上单调递减,则:;解得,由图象可知,在上,有且仅有一个解,故在上,同样有且仅有一个解,当即时,联立,则,解得或1(舍去),当时由图象可知,符合条件,综上:的取值范围为.故答案为【点睛】本题考查函数的单调性和方程的零点,对于分段函数在定义域内是减函数,除了每一段都是减函数以外,还要注意右段在左段的下方,经常会被忽略,是一个易错点;复杂方程的解通常转化为函数的零点,或两函数的交点,体现了数学结合思想,属于难题.12、【解析】分,,三类,根据一次函数和二次函数的性质可解.【详解】当时,,易知此时函数的值域为;当时,二次函数图象开口向下,显然不满足题意;当时,∵函数的值域为,∴,解得或,综上,实数a的取值范围是,故答案为:.13、①.②.【解析】直接将代入解析式即可求的值,进而可得的解析式,再分段求最小值即可求解.【详解】因为,所以,所以,当时,对称轴为,开口向上,此时在单调递增,,当时,,此时时,最小值,所以最小值为,故答案为:;.14、11【解析】根据指数函数模型求解【详解】设第月首次突破110万元,则,,,因此11月份首次突破110万元故答案为:1115、05【解析】根据球的体积公式可求得准确直径,由近似公式可得近似直径,然后由绝对误差的定义即可求解.【详解】解:由题意,,所以,所以直径d结果的绝对误差是,故答案为:0.05.16、1【解析】设该扇形的半径为,根据题意,因为扇形的圆心角为弧度,周长为,则有,,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)的值域为,的递减区间为【解析】(1)先根据二倍角公式和两角和与差的公式进行化简,再求出周期即可;(2)先根据的范围求得,再结合正弦函数的性质可得到函数的值域,求得单调递减区间【详解】(1)(2)∵,,的值域为,当,即,时,单调递减,且,所以的递减区间为18、(1);(2)32万部,最大值为6104万美元.【解析】(1)先由生产该款手机2万部并全部销售完时,年利润为704万美元,解得,然后由,将代入即可.(2)当时利用二次函数的性质求解;当时,利用基本不等式求解,综上对比得到结论.【详解】(1)因为生产该款手机2万部并全部销售完时,年利润为704万美元.所以,解得,当时,,当时,.所以(2)①当时,,所以;②当时,,由于,当且仅当,即时,取等号,所以此时的最大值为5760.综合①②知,当,取得最大值为6104万美元.【点睛】思路点睛:应用题的基本解题步骤:(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值;(2)设变量时一般要把求最大值或最小值的变量定义为函数;(3)解应用题时,要注意变量的实际意义及其取值范围;(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解19、(1);(2).【解析】(1)根据函数的奇偶性求出的值,结合反函数的概念求出,利用指数函数的性质求出的取值范围即可;(2)由对数函数概念可得,将原问题转化为在恒成立,结合二次函数的性质即可得出结果.【小问1详解】因为为R上的奇函数,所以,即,解得,所以,为R上的奇函数,所以符合题意.有令,则,得,由得,即,;【小问2详解】由,得,由恒成立可得恒成立,即在恒成立,所以0<k21-因为,所以,解得.所以k的取值范围是.20、(1)(2)【解析】(1)两集合的交集为两集合的相同的元素构成的集合,两集合的并集为两集合所有的元素构成的集合;(2)由两集合的子集关系得到两集合边界值的大小关系,从而解不等式得到的取值范围试题解析:(1),(2)由可得考点:集合运算及集合的子集关系21、(1);(2)证明见解析;(3).【解析】(1)根据新定义逐一判断即可;(2)根据新定义证明即可;(3)若为线周期函数,则存在非零
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 复习讲义(无答案) 人教版九年级英语全册
- 2026年智能能耗监测设备项目评估报告
- 2026年烟台南山学院高职单招职业适应性测试备考试题带答案解析
- 2026年智能网络摄像头项目可行性研究报告
- 水行政委托协议书
- 业主提供家具服务协议书
- 张纪中与前妻离婚协议书
- 2026年辽宁冶金职业技术学院高职单招职业适应性测试备考试题带答案解析
- 艺术参与与社会排斥关系研究
- 2026年长沙电力职业技术学院单招职业技能考试模拟试题带答案解析
- DG-TJ08-804-2024 既有建筑结构检测与评定标准
- 《山海经》全文及译文
- 海外采矿合作协议书
- 《电机与变压器》全套教学课件
- 2025版小学语文课程标准解读
- 《道路旅客运输企业突发事件应急预案》
- 阿拉伯语课程讲解
- 喷油部管理制度
- 《齐鲁文化》期末笔记
- 化工原理课程设计说明书-2778kg-h苯-甲苯筛板式精馏塔设计
- 97S501-1-井盖及踏步图集
评论
0/150
提交评论