天津市武清区等五区县2026届数学高二上期末检测模拟试题含解析_第1页
天津市武清区等五区县2026届数学高二上期末检测模拟试题含解析_第2页
天津市武清区等五区县2026届数学高二上期末检测模拟试题含解析_第3页
天津市武清区等五区县2026届数学高二上期末检测模拟试题含解析_第4页
天津市武清区等五区县2026届数学高二上期末检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津市武清区等五区县2026届数学高二上期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某商场有四类食品,其中粮食类、植物油类、动物性食品类以及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4 B.5C.6 D.72.已知抛物线上一点到焦点的距离为3,准线为l,若l与双曲线的两条渐近线所围成的三角形面积为,则双曲线C的离心率为()A.3 B.C. D.3.是椭圆的焦点,点在椭圆上,点到的距离为1,则到的距离为()A.3 B.4C.5 D.64.将一颗骰子先后抛掷2次,观察向上的点数,则点数之和是4的倍数但不是3的倍数的概率为()A. B.C. D.5.在等差数列中,其前项和为.若,是方程的两个根,那么的值为()A.44 B.C.66 D.6.定义“等方差数列”:如果一个数列从第二项起,每一项的平方与它的前一项的平方的差都等于同一个常数,那么这个数列就叫作等方差数列,这个常数叫作该数列的方公差.设是由正数组成的等方差数列,且方公差为4,,则数列的前24项和为()A. B.3C. D.67.命题:,的否定为()A., B.不存在,C., D.,8.若直线与直线垂直,则()A.6 B.4C. D.9.双曲线C:的右焦点为F,过点F作双曲线C的两条渐近线的垂线,垂足分别为H1,H2.若,则双曲线C的离心率为()A. B.C. D.210.2021年6月17日9时22分,搭载神舟十二号载人飞船的长征二号F遥十二运载火箭,在酒泉卫星发射中心点火发射.此后,神舟十二号载人飞船与火箭成功分离,进入预定轨道,并快速完成与“天和”核心舱的对接,聂海胜、刘伯明、汤洪波3名宇航员成为核心舱首批“入住人员”,并在轨驻留3个月,开展舱外维修维护,设备更换,科学应用载荷等一系列操作.已知神舟十二号飞船的运行轨道是以地心为焦点的椭圆,设地球半径为R,其近地点与地面的距离大约是,远地点与地面的距离大约是,则该运行轨道(椭圆)的离心率大约是()A. B.C. D.11.在等差数列中,,,则的值是()A.130 B.260C.156 D.16812.已知圆,则圆C关于直线对称的圆的方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.记为等差数列{}的前n项和,若,,则=_________.14.椭圆的长轴长为______15.已知,满足约束条件则的最小值为__________16.已知数列是递增等比数列,,则数列的前项和等于.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知曲线:.(1)若曲线是双曲线,求的取值范围;(2)设,已知过曲线的右焦点,倾斜角为的直线交曲线于A,B两点,求.18.(12分)如图,已知圆C与y轴相切于点,且被x轴正半轴分成的两段圆弧长之比为1∶2(1)求圆C的方程;(2)已知点,是否存在弦被点P平分?若存在,求直线的方程;若不存在,请说明理由19.(12分)如图,正方体的棱长为4,E,F分别是上的点,且.(1)求与平面所成角的正切值;(2)求证:.20.(12分)已知圆,圆心在直线上(1)求圆的标准方程;(2)求直线被圆截得的弦的长21.(12分)已知圆的圆心为,且圆经过点(1)求圆的标准方程;(2)若圆:与圆恰有两条公切线,求实数取值范围22.(10分)已知抛物线,过焦点的直线l交抛物线C于M、N两点,且线段中点的纵坐标为2(1)求直线l的方程;(2)设x轴上关于y轴对称的两点P、Q,(其中P在Q的右侧),过P的任意一条直线交抛物线C于A、B两点,求证:始终被x轴平分

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】按照分层抽样的定义进行抽取.【详解】按照分层抽样的定义有,粮食类:植物油类:动物性食品类:果蔬类=4:1:3:2,抽20个出来,则粮食类8个,植物油类2个,动物性食品类6个,果蔬类4个,则抽取的植物油类与果蔬类食品种数之和是6个.故选:C.2、C【解析】先由已知结合抛物线的定义求出,从而可得抛物线的准线方程,则可求出准线l与两条渐近线的交点分别为,然后由题意可得,进而可求出双曲线的离心率详解】依题意,抛物线准线,由抛物线定义知,解得,则准线,双曲线C的两条渐近线为,于是得准线l与两条渐近线的交点分别为,原点为O,则面积,双曲线C的半焦距为c,离心率为e,则有,解得故选:C3、C【解析】利用椭圆的定义直接求解【详解】由题意得,得,因为,,所以,故选:C4、B【解析】基本事件总数,再利用列举法求出点数之和是4的倍数但不是3的倍数包含的基本事件的个数,由此能求出点数之和是4的倍数但不是3的倍数的概率【详解】解:将一颗骰子先后抛掷2次,观察向上的点数之和,基本事件总数,点数之和是4的倍数但不是3的倍数包含的基本事件有:,,,,,,,,共8个,则点数之和是4的倍数但不是3的倍数的概率为故选:B5、D【解析】由,是方程的两个根,利用韦达定理可知与的和,根据等差数列的性质可得与的和等于,即可求出的值,然后再利用等差数列的性质可知等于的11倍,把的值代入即可求出的值.【详解】因为,是方程的两个根,所以,而,所以,则,故选:.6、C【解析】根据等方差数列的定义,结合等差数列的通项公式,运用裂项相消法进行求解即可.【详解】因为是方公差为4的等方差数列,所以,,∴,∴,∴,故选:C7、D【解析】含有量词的命题的否定方法:先改变量词,然后再否定结论即可【详解】解:命题:,的否定为:,故选:D8、A【解析】由两条直线垂直的条件可得答案.【详解】由题意可知,即故选:A.9、D【解析】将条件转化为该双曲线的一条渐近线的倾斜角为,可得,由离心率公式即可得解.【详解】由题意,(为坐标原点),所以该双曲线的一条渐近线的倾斜角为,所以,即,所以离心率.故选:D.10、A【解析】以运行轨道长轴所在直线为x轴,地心F为右焦点建立平面直角坐标系,设椭圆方程为,根据题意列出方程组,解方程组即可.【详解】以运行轨道长轴所在直线为x轴,地心F为右焦点建立平面直角坐标系,设椭圆方程为,其中,根据题意有,,所以,,所以椭圆的离心率故选:A11、A【解析】由等差数列的性质计算得到,进而利用求和公式,变形求出答案.【详解】由题意得:,故故选:A12、B【解析】求得圆的圆心关于直线的对称点,由此求得对称圆的方程.【详解】设圆的圆心关于直线的对称点为,则,所以对称圆的方程为.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、18【解析】根据等差数列通项和前n项和公式即可得到结果.【详解】设等差数列的公差为,由,得,解得,所以故答案为:1814、4【解析】把椭圆方程化成标准形式直接计算作答.【详解】椭圆方程化为:,令椭圆长半轴长为a,则,解得,所以椭圆的长轴长为4.故答案为:415、2【解析】由题意,根据约束条件作出可行域图,如图所示,将目标函数转化为,作出其平行直线,并将其在可行域内平行上下移动,当移到顶点时,在轴上的截距最小,即.16、【解析】由题意,,解得或者,而数列是递增的等比数列,所以,即,所以,因而数列的前项和,故答案为.考点:1.等比数列的性质;2.等比数列的前项和公式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用双曲线的标准方程直接列不等式组,即可求解;(2)先求出直线l的方程为:,利用“设而不求法”和弦长公式求弦长.【小问1详解】要使曲线:为双曲线,只需,解得:,即的取值范围.【小问2详解】当m=0时,曲线C的方程为,可得,所以右焦点,由题意可得直线l的方程为:.设,联立整理可得:,可得:所以弦长,所以18、(1).(2).【解析】(1)由已知得圆心C在直线上,设圆C与x轴的交点分别为E、F,则有,,圆心C的坐标为(2,1),由此求得圆C的标准方程;(2)假设存在弦被点P平分,有,由此求得直线AB的斜率可得其方程再检验,直线AB与圆C是否相交即可.小问1详解】解:因为圆C与y轴相切于点,所以圆心C在直线上,设圆C与x轴的交点分别为E、F,由圆C被x轴分成的两段弧长之比为2∶1,得,所以,圆心C的坐标为(2,1),所以圆C的方程为;【小问2详解】解:因为点,有,所以点P在圆C的内部,假设存在弦被点P平分,则,又,所以,所以直线AB的方程为,即,检验,圆心C到直线AB的距离为,所以直线AB与圆C相交,所以存在弦被点P平分,此时直线的方程为.19、(1);(2)证明见解析.【解析】(1)在正方体中,平面,连接,则为与平面所成的角,在直角三角形,求出即可;(2)∵是正方体,又是空间垂直问题,∴易采用向量法,∴建立如图所示的空间直角坐标系,欲证,只须证,再用向量数量积公式求解即可.【小问1详解】在正方体中,平面,连接,则为与平面所成的角,又,,,∴;【小问2详解】如图,以为坐标原点,直线、、分别轴、轴、轴,建立空间直角坐标系.则∴,,∴,∴.20、(1);(2)【解析】(1)由圆的一般式方程求出圆心代入直线即可求出得值,即可求解;(2)先计算圆心到直线的距离,利用即可求弦长.【详解】(1)由圆,可得所以圆心为,半径又圆心在直线上,即,解得所以圆的一般方程为,故圆的标准方程为(2)由(1)知,圆心,半径圆心到直线的距离则直线被圆截得的弦的长为所以,直线被圆截得弦的长为【点睛】方法点睛:圆的弦长的求法(1)几何法,设圆的半径为,弦心距为,弦长为,则;(2)代数法,设直线与圆相交于,,联立直线与圆的方程,消去得到一个关于的一元二次方程,从而可求出,,根据弦长公式,即可得出结果.21、(1);(2).【解析】(1)根据给定条件求出圆C的半径,再直接写出方程作答.(2)由给定条件可得圆C与圆O相交,由此列出不等式求解作答.【小问1详解】依题意,圆C的半径,所以圆的标

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论