版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖北省枣阳市第七中学数学高二上期末综合测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线y=4x2的焦点坐标是()A.(0,1) B.(1,0)C. D.2.圆与圆的公切线的条数为()A.1 B.2C.3 D.43.已知数列满足,(且),若恒成立,则M的最小值是()A.2 B.C. D.34.在平形六面体中,其中,,,,,则的长为()A. B.C. D.5.已知双曲线,则该双曲线的实轴长为()A.1 B.2C. D.6.已知数列满足:对任意的均有成立,且,,则该数列的前2022项和()A0 B.1C.3 D.47.给出下列判断,其中正确的是()A.三点唯一确定一个平面B.一条直线和一个点唯一确定一个平面C.两条平行直线与同一条直线相交,三条直线在同一平面内D.空间两两相交的三条直线在同一平面内8.已知圆,圆,M,N分别是圆上的动点,P为x轴上的动点,则以的最小值为()A B.C. D.9.在平面直角坐标系中,已知椭圆的上、下顶点分别为、,左顶点为,左焦点为,若直线与直线互相垂直,则椭圆的离心率为A. B.C. D.10.在正方体中,AC与BD的交点为M.设则下列向量与相等的向量是()A. B.C. D.11.平面与平面平行的充分条件可以是()A.平面内有一条直线与平面平行B.平面内有两条直线分别与平面平行C.平面内有无数条直线分别与平面平行D平面内有两条相交直线分别与平面平行12.2021年小林大学毕业后,9月1日开始工作,他决定给自己开一张储蓄银行卡,每月的10号存钱至该银行卡(假设当天存钱次日到账).2021年9月10日他给卡上存入1元,以后每月存的钱数比上个月多一倍,则他这张银行卡账上存钱总额(不含银行利息)首次达到1万元的时间为()A.2022年12月11日 B.2022年11月11日C.2022年10月11日 D.2022年9月11日二、填空题:本题共4小题,每小题5分,共20分。13.某校开展“读书月”朗诵比赛,9位评委为选手A给出的分数如右边茎叶图所示.记分员在去掉一个最高分和一个最低分后算得平均分为91,复核员在复核时发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是___________.选手A87899924x1514.已知点P是抛物线上的一个动点,则点P到点M(0,2)的距离与点P到该抛物线准线的距离之和的最小值为______________15.设函数是函数的导函数,已知,且,则使得成立的x的取值范围是_________.16.若,则数列的前21项和___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知项数为的数列是各项均为非负实数的递增数列.若对任意的,(),与至少有一个是数列中的项,则称数列具有性质.(1)判断数列,,,是否具有性质,并说明理由;(2)设数列具有性质,求证:;(3)若数列具有性质,且不是等差数列,求项数的所有可能取值.18.(12分)椭圆的左右焦点分别为,,焦距为,为原点.椭圆上任意一点到,距离之和为.(1)求椭圆的标准方程;(2)过点的斜率为2的直线交椭圆于、两点,求的面积.19.(12分)如图,三棱锥中,,,,,,点是PA的中点,点D是AC的中点,点N在PB上,且.(1)证明:平面CMN;(2)求平面MNC与平面ABC所成角的余弦值.20.(12分)已知的三个顶点是,,(1)求边所在的直线方程;(2)求经过边的中点,且与边平行的直线的方程21.(12分)已知圆C的圆心在坐标原点,且过点M()(1)求圆C的方程;(2)已知点P是圆C上的动点,试求点P到直线的距离的最小值;22.(10分)已知为各项均为正数的等比数列,且,.(1)求数列的通项公式;(2)令,求数列前n项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】将抛物线方程化为标准方程,由此可抛物线的焦点坐标得选项.【详解】解:将抛物线y=4x2的化为标准方程为x2=y,p=,开口向上,焦点在y轴的正半轴上,故焦点坐标为(0,).故选:C2、D【解析】公切线条数与圆与圆的位置关系是相关的,所以第一步需要判断圆与圆的位置关系.【详解】圆的圆心坐标为,半径为3;圆的圆心坐标为,半径为1,所以两圆的心心距为,所以两圆相离,公切线有4条.故选:D.3、C【解析】根据,(且),利用累加法求得,再根据恒成立求解.【详解】因为数列满足,,(且)所以,,,,因为恒成立,所以,则M的最小值是,故选:C4、B【解析】根据空间向量基本定理、加法的运算法则,结合空间向量数量积的运算性质进行求解即可.【详解】因为是平行六面体,所以,所以有:,因此有:,因为,,,,,所以,所以,故选:B5、B【解析】根据给定的双曲线方程直接计算即可作答.【详解】双曲线的实半轴长,所以该双曲线的实轴长为2.故选:B6、A【解析】根据可知,数列具有周期性,即可解出【详解】因为,所以,即,所以数列中的项具有周期性,,由,,依次对赋值可得,,一个周期内项的和为零,而,所以数列的前2022项和故选:A7、C【解析】根据确定平面的条件可对每一个选项进行判断.【详解】对A,如果三点在同一条直线上,则不能确定一个平面,故A错误;对B,如果这个点在这条直线上,就不能确定一个平面,故B错误;对C,两条平行直线确定一个平面,一条直线与这两条平行直线都相交,则这条直线就在这两条平行直线确定的一个平面内,故这三条直线在同一平面内,C正确;对D,空间两两相交的三条直线可确定一个平面,也可确定三个平面,故D错误.故选:C8、A【解析】求出圆关于轴的对称圆的圆心坐标,以及半径,然后求解圆与圆的圆心距减去两个圆的半径和,即可求出的最小值.【详解】圆关于轴对称圆的圆心坐标,半径为1,圆的圆心坐标为,半径为3,易知,当三点共线时,取得最小值,的最小值为圆与圆的圆心距减去两个圆的半径和,即:.故选:A.注意:9至12题为多选题9、C【解析】依题意,直线与直线互相垂直,,,故选10、C【解析】根据空间向量的运算法则,推出的向量表示,可得答案.【详解】,故选:C.11、D【解析】根据平面与平面平行的判定定理可判断.【详解】对A,若平面内有一条直线与平面平行,则平面与平面可能平行或相交,故A错误;对B,若平面内有两条直线分别与平面平行,若这两条直线平行,则平面与平面可能平行或相交,故B错误;对C,若平面内有无数条直线分别与平面平行,若这无数条直线互相平行,则平面与平面可能平行或相交,故C错误;对D,若平面内有两条相交直线分别与平面平行,则根据平面与平面平行的判定定理可得平面与平面平行,故D正确.故选:D.12、C【解析】分析可得每月所存钱数依次成首项为1,公比为2的等比数列,其前n项和为,分析首次达到1万元的值,即得解【详解】依题意可知,小林从第一个月开始,每月所存钱数依次成首项为1,公比为2的等比数列,其前n项和为.因为为增函数,且,所以第14个月的10号存完钱后,他这张银行卡账上存钱总额首次达到1万元,即2022年10月11日他这张银行卡账上存钱总额首次达到1万元.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】根据题意分和两种情况讨论,再根据平均分公式计算即可得出答案.【详解】解:当时,则去掉的最低分数为87分,最高分数为95分,则,所以,当时,则去掉的最低分数为87分,最高分数为分,则平均分为,与题意矛盾,综上.故答案为:4.14、【解析】由抛物线的定义得:,所以,当三点共线时,最小可得答案.【详解】如图所示:,由抛物线的定义得:,所以,由图象知:当三点共线时,最小,.故答案为:.15、【解析】构造函数利用导数研究单调性,即可得到答案;【详解】,令,,单调递减,且,,x的取值范围是,故答案为:16、【解析】利用分组求和法求出答案即可.【详解】故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)数列,,,不具有性质;(2)证明见解析;(3)可能取值只有.【解析】(1)由数列具有性质的定义,只需判断存在与都不是数列中的项即可.(2)由性质知:、,结合非负递增性有,再由时,必有,进而可得,,,,,应用累加法即可证结论.(3)讨论、、,结合性质、等差数列的性质判断是否存在符合题设性质,进而确定的可能取值.【小问1详解】数列,,,不具有性质.因为,,和均不是数列,,,中的项,所以数列,,,不具有性质.【小问2详解】记数列的各项组成的集合为,又,由数列具有性质,,所以,即,所以.设,因为,所以.又,则,,,,.将上面的式子相加得:.所以.【小问3详解】(i)当时,由(2)知,,,这与数列不是等差数列矛盾,不合题意.(ii)当时,存在数列,,,,符合题意,故可取.(iii)当时,由(2)知,.①当时,,所以,.又,,∴,,,,即.由,,得:,,∴.②由①②两式相减得:,这与数列不是等差数列矛盾,不合题意.综上,满足题设的的可能取值只有.【点睛】关键点点睛:第二问,由可知,并应用累加法求证结论;第三问,讨论k的取值,结合的性质,由性质、等差数列的性质判断不同k的取值情况下数列的存在性即可.18、(1)(2)【解析】(1)根据题意和椭圆的定义可知a,c,再根据,即可求出b,由此即可求出椭圆的方程;(2)求出直线方程,将其与椭圆方程联立,根据弦长公式求出的长度,再根据点到直线的距离公式求出点O到直线AB的距离,再根据面积公式即可求出结果.【小问1详解】由题意可得,,∴,,,所以椭圆的标准方程为.【小问2详解】直线l的方程为,代入椭圆方程得,设,,则,,,∴,又∵点O到直线AB的距离,∴,即△OAB的面积为.19、(1)证明见解析(2)【解析】建立如图所示空间直角坐标系,得到相关点和相关向量的坐标,(1)求出平面的法向量,利用证明即可;(2)由(1)知平面的法向量,再求平面的法向量,利用向量的夹角公式即可求解.【小问1详解】证明:三棱锥中,,,∴分别以,,,,轴建立如图所示空间直角坐标系∵,,点M是PA的中点,点D是AC的中点,点N在PB上且∴,,,,,设平面的法向量,,,,由得令得∴∵∴又平面∴平面;【小问2详解】,,∴平面∴为平面的法向量则与的夹角的补角是平面与平面所成二面角的平面角.∴平面与平面所成角的余弦值为.20、(1)(2)【解析】(1)利用直线方程的两点式求解;(2)先求得AB的中点,再根据直线与AC平行,利用点斜式求解.【小问1详解】因为,,所以边所在的直线方程为,即;【小问2详解】因为,,所以AB的中点为:,又,所以直线方程为:,即.21、(1)(2)【解析】(1)由圆C的圆心在坐标原点,且过点,求得圆的半径,利用圆的标准方程,即可求解;(2)由点到直线的距离公式,求得圆心到直线l的距离为,进而得到点P到直线的距离的最小值为,得出答案.【详解】(1)由题意,圆C的圆心在坐标原点,且过点,所以圆C的半径为,所以圆C的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年长江职业学院单招职业技能考试备考题库带答案解析
- Unit 4 Fun with numbers 单元整体公开课一等奖创新教学设计(共五课时)
- 2026年跨境智能教育服务项目投资计划书
- Unit 6 How do you feel-单元整体公开课一等奖创新教学设计-2
- 2026年内蒙古电子信息职业技术学院高职单招职业适应性考试模拟试题带答案解析
- 2026年内江职业技术学院单招职业技能笔试参考题库带答案解析
- 2026年云南交通职业技术学院高职单招职业适应性测试参考题库带答案解析
- 2026年贵州食品工程职业学院单招综合素质笔试备考试题附答案详解
- 2026年衢州职业技术学院高职单招职业适应性考试备考题库带答案解析
- 2026年郑州工业安全职业学院高职单招职业适应性测试参考题库带答案解析
- 小儿脑瘫作业疗法家庭指导
- 汉字鱼的讲解课件
- 内蒙古电力招聘考试真题2024
- 知道智慧树知识产权信息检索与利用满分测试答案
- 火电厂消防知识培训课件
- 医院三合理一规范培训
- 解读《重症监护病房临终关怀与姑息治疗指南》
- 关键物料管理办法
- 禁毒讲师团管理办法
- 《室内空气 第9部分:建材产品和装饰材料中挥发性有机化合物释放量的测试 环境测试舱法》标准化发展报告
- 《2025-2026中国房地产市场报告》
评论
0/150
提交评论