版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届云南省泸西县泸源普通高级中学数学高二上期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题p:存在一个实数﹐它的绝对值不是正数.则下列结论正确的是()A.:任意实数,它的绝对值是正数,为假命题B.:任意实数,它的绝对值不是正数,为假命题C.:存在一个实数,它的绝对值是正数,为真命题D.:存在一个实数,它的绝对值是负数,为真命题2.若,(),则,的大小关系是A. B.C. D.,的大小由的取值确定3.已知点在椭圆上,与关于原点对称,,交轴于点,为坐标原点,,则椭圆的离心率为()A. B.C. D.4.直线在轴上的截距为,在轴上的截距为,则有()A., B.,C., D.,5.“且”是“”的()A.充分不必要条件 B.必要不充分条件C充要条件 D.既不充分也不必要条件6.命题“若α=,则tanα=1”的逆否命题是A.若α≠,则tanα≠1 B.若α=,则tanα≠1C.若tanα≠1,则α≠ D.若tanα≠1,则α=7.双曲线与椭圆的焦点相同,则等于()A.1 B.C.1或 D.28.若双曲线的离心率为3,则的最小值为()A. B.1C. D.29.已知双曲线,过左焦点且与轴垂直的直线与双曲线交于、两点,若弦的长恰等于实铀的长,则双曲线的离心率为()A. B.C. D.10.已知,是双曲线的左、右焦点,点A是的左顶点,为坐标原点,以为直径的圆交的一条渐近线于、两点,以为直径的圆与轴交于两点,且平分,则双曲线的离心率为()A. B.2C. D.311.已知向量a→=(1,1,k),A. B.C. D.12.抛物线C:的焦点为F,P,R为C上位于F右侧的两点,若存在点Q使四边形PFRQ为正方形,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.数列满足,则__________.14.如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x=_____________,y=_____________15.如图,在棱长为1的正方体中,点M为线段上的动点,下列四个结论:①存在点M,使得直线AM与直线夹角为30°;②存在点M,使得与平面夹角的正弦值为;③存在点M,使得三棱锥体积为;④存在点M,使得,其中为二面角的大小,为直线与直线AB所成的角则上述结论正确的有______.(填上正确结论的序号)16.点到直线的距离为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,几何体是圆柱的一部分,它是由矩形(及其内部)以边所在直线为旋转轴旋转得到的封闭图形.(1)设,,求这个几何体的表面积;(2)设G是弧DF的中点,设P是弧CE上的一点,且.求异面直线AG与BP所成角的大小.18.(12分)已知两圆x2+y2-2x-6y-1=0.x2+y2-10x-12y+m=0(1)m取何值时两圆外切?(2)m取何值时两圆内切?(3)当m=45时,求两圆公共弦所在直线的方程和公共弦的长19.(12分)设函数,其中是自然对数的底数,.(1)若,求的最小值;(2)若,证明:恒成立.20.(12分)已知函数,其中(1)当时,求函数的单调区间;(2)①若恒成立,求的最小值;②证明:,其中.21.(12分)若数列的前n项和满足,(1)求的通项公式;(2)设,求数列的前n项和22.(10分)如图所示,在长方体ABCD-A1B1C1D1中,E,F分别是AB,A1C的中点,AD=AA1=2,AB=(1)求证:EF∥平面ADD1A1;(2)求平面EFD与平面DEC的夹角的余弦值;(3)在线段A1D1上是否存在点M,使得BM⊥平面EFD?若存在,求出的值;若不存在,请说明理由
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据存在量词命题的否定为全称量词命题判断,再利用特殊值判断命题的真假;【详解】解:因为命题p“存在一个实数﹐它的绝对值不是正数”为存在量词命题,其否定为“任意实数,它的绝对值是正数”,因为,所以为假命题;故选:A2、A【解析】∵且,∴,又,∴,故选A.3、B【解析】由,得到,结合,得到,进而求得,得出,结合离心率的定义,即可求解.【详解】设,则,由,可得,所以,因为,可得,又由,两式相减得,即,即,又因为,所以,即又由,所以,解得.故选:B.4、B【解析】将直线方程的一般形式化为截距式,由此可得其在x轴和y轴上的截距.【详解】直线方程化成截距式为,所以,故选:B.5、A【解析】按照充分必要条件的判断方法判断,“且”能否推出“”,以及“”能否推出“且”,判断得到正确答案,【详解】当且时,成立,反过来,当时,例:,不能推出且.所以“且”是“”的充分不必要条件.故选:A【点睛】本题考查充分不必要条件的判断,重点考查基本判断方法,属于基础题型.6、C【解析】因为“若,则”的逆否命题为“若,则”,所以“若α=,则tanα=1”的逆否命题是“若tanα≠1,则α≠”.【点评】本题考查了“若p,则q”形式的命题的逆命题、否命题与逆否命题,考查分析问题的能力.7、A【解析】根据双曲线方程形式确定焦点位置,再根据半焦距关系列式求参数.【详解】因为双曲线的焦点在轴上,所以椭圆焦点在轴上,依题意得解得.故选:A8、D【解析】由双曲线的离心率为3和,求得,化简,结合基本不等式,即可求解.【详解】由题意,双曲线的离心率为3,即,即,又由,可得,所以,当且仅当,即时,“”成立.故选:D【点睛】使用基本不等式解答问题的策略:1、利用基本不等式求最值时,要注意三点:一是各项为正;二是寻求定值;三是考虑等号成立的条件;2、若多次使用基本不等式时,容易忽视等号的条件的一致性,导致错解;3、巧用“拆”“拼”“凑”:在使用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中的“正、定、等”的条件.9、B【解析】求出,进而求出,之间的关系,即可求解结论【详解】解:由题意,直线方程为:,其中,因此,设,,,,解得,得,,弦的长恰等于实轴的长,,,故选:B10、B【解析】由直径所对圆周角是直角,结合双曲线的几何性质和角平分线定义可解.【详解】由圆的性质可知,,,所以,因为,所以又因为平分,所以,由,得,所以,即所以故选:B11、D【解析】根据向量的坐标运算和向量垂直数量积为0可解.【详解】解:根据题意,易得a→∵与两向量互相垂直,∴0+2+k+2=0,解得.故选:D12、A【解析】不妨设,不妨设,则,利用抛物线的对称性及正方形的性质列出的方程求得后可得结论【详解】如图所示,设,不妨设,则,由抛物线的对称性及正方形的性质可得,解得(正数舍去),所以故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】对递推关系多递推一次,再相减,可得,再验证是否满足;【详解】∵①时,②①-②得,时,满足上式,.故答案为:.【点睛】数列中碰到递推关系问题,经常利用多递推一次再相减的思想方法求解.14、①.3②.5【解析】根据茎叶图进行数据分析,列方程求出x、y.【详解】由题意,甲组数据为56,62,65,70+x,74;乙组数据为59,61,67,60+y,78.要使两组数据中位数相等,有65=60+y,所以y=5.又平均数相同,则,解得x=3.故答案为:3;5.15、②③【解析】对①:由连接,,由平面,即可判断;对③:设到平面的距离为,则,所以即可判断;对④:以为坐标原点建立如图所示的空间直角坐标系,设,利用向量法求出与,比较大小即可判断;对②:设与平面夹角为,利用向量法求出,即可求解判断.【详解】解:对①:连接,,在正方体中,由平面,可得,又,,所以平面,所以,故①错误;对③:设到平面的距离为,则,所以,故③正确;对④:以为坐标原点建立如图所示的空间直角坐标系,设,则,0,,,0,,,,,,,,所以,,,,,,设平面的法向量为,,,则,即,取,,,又,1,是平面的一个法向量,又二面角为锐二面角或直角,所以,,,又,,,故④错误对②:由④的解析知,,,,设平面的法向量为,则,即,取,则,设与平面夹角为,令,即,又,解得或,故②正确.故答案为:②③.16、【解析】利用点到直线的距离公式即可得出【详解】利用点到直线的距离可得:故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)将几何体的表面积分成上下两个扇形、两个矩形和一个圆柱形侧面的一部分组成,分别求出后相加即可;(2)先根据条件得到面,通过平移将异面直线转化为同一个平面内的直线夹角即可【小问1详解】上下两个扇形的面积之和为:两个矩形面积之和为:4侧面圆弧段的面积为:故这个几何体的表面积为:【小问2详解】如下图,将直线平移到下底面上为由,且,,可得:面则而G是弧DF的中点,则由于上下两个平面平行且全等,则直线与直线的夹角等于直线与直线的夹角,即为所求,则则直线与直线的夹角为18、(1)(2)(3)直线方程为4x+3y-23=0,弦长为【解析】(1)先把两个圆的方程化为标准形式,求出圆心和半径,再根据两圆的圆心距等于两圆的半径之和,求得m的值;(2)由两圆的圆心距等于两圆的半径之差为,求得m的值.(3)当m=45时,把两个圆的方程相减,可得公共弦所在的直线方程.求出第一个圆的圆心(1,3)到公共弦所在的直线的距离d,再利用弦长公式求得弦长试题解析:(1)由已知可得两个圆的方程分别为(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=61-m,两圆的圆心距d==5,两圆的半径之和为+,由两圆的半径之和为+=5,可得m=(2)由两圆的圆心距d=="5"等于两圆的半径之差为|-|,即|-|=5,可得-="5"(舍去),或-=-5,解得m=(3)当m=45时,两圆的方程分别为(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=16,把两个圆的方程相减,可得公共弦所在的直线方程为4x+3y-23=0第一个圆的圆心(1,3)到公共弦所在的直线的距离为d==2,可得弦长为考点:1.两圆相切的位置关系;2.两圆相交的公共弦问题19、(1)(2)证明见解析【解析】(1)当时,,求出,可得答案;(2)设,,,,,设,求出利用单调性可得答案.【小问1详解】当时,,则,所以单调递增,又,当时,,单调递减,当时,,单调递增,所以.【小问2详解】设,若,则,若,则,设,则,所以单调递增,又,当时,,上单调递减,当时,,单调递增,所以,所以,综上,恒成立.【点睛】本题考查了求函数值域或最值的问题,一般都需要通过导数研究函数的单调性、极值、最值来处理,特别的要根据所求问题,适时构造恰当的函数,再利用所构造函数的单调性、最值解决问题是常用方法,考查了学生分析问题、解决问题的能力.20、(1)单调递增区间为,单调递减区间为(2)①1;②证明见解析【解析】(1)求出函数的导数,在定义域内,解关于导函数的不等式,求出函数的单调区间即可;(2)①分离参数得,令,利用函数的单调性求出的最大值即可;②由①知:,时取“=”,令,即,最后累加即可.【小问1详解】由已知条件得,其中的定义域为,则,当时,,当时,,综上所述可知:的单调递增区间为,单调递减区间为;【小问2详解】①由恒成立,即恒成立,令,则,当时,,当时,,∴在上单调递增,上单调递减,∴,∴的最小值为1.②由①知:,时取“=”,令,得,∴,当时,.21、(1)(2)【解析】(1)根据递推关系结合等比数列的定义可求解;(2)根据(1)化简,利用裂项相消法求出数列的前n项和.小问1详解】当时,,所以,即,当时,,得,则所以数列是首项为﹣1,公比为3的等比数列所以【小问2详解】由(1)得:所以,所以22、(1)证明见解析;(2);(3)不存在;理由见解析【解析】(1)连接AD1,A1D,交于点O,所以点O是A1D的中点,连接FO,根据判定定理证明四边形AEFO是平行四边形,进而得到线面平行;(2)建立坐标系,求出两个面的法向量,求得两个法向量的夹角的余弦值,进而得到二面角的夹角的余弦值;(3)假设在线段A1D1上存在一点M,使得BM⊥平面EFD,设出点M的坐标,由第二问得到平面EFD的一个法向量,判断出和该法向量不平行,故不存在满足题意的点M.【详解】(1)证明:连接AD1,A1D,交于点O,所以点O是A1D的中点,连接FO因为F是A1C的中点,所以OF∥CD,OF=CD因AE∥CD,AE=CD,所以OF∥AE,OF=AE所以四边形AEFO是平行四边形所以EF∥AO因为EF⊄平面ADD1A1,AO⊂平面ADD1A1,所以EF∥平面ADD1A1(2)以点A为坐标原点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年德宏职业学院单招综合素质笔试参考题库带答案解析
- 2026年广州城建职业学院单招综合素质考试备考题库带答案解析
- 2026年甘肃农业职业技术学院高职单招职业适应性考试参考题库带答案解析
- 投资融资项目合作协议(2025年)
- 停车场租赁补充合同协议2025年试行版
- 2026年海南政法职业学院单招综合素质考试参考题库带答案解析
- 2026年新疆科技职业技术学院单招职业技能考试模拟试题附答案详解
- 碳汇林监测协议2025年知识产权归属
- 2026年贵州经贸职业技术学院单招综合素质考试备考题库带答案解析
- 数字孪生城市规划咨询合同协议
- 2026年内蒙古化工职业学院单招职业适应性考试必刷测试卷附答案解析
- 财务数字化转型与业财数据深度融合实施路径方案
- 后勤保障医院运维成本智能调控
- 循证护理在儿科护理中的实践与应用
- 少儿无人机课程培训
- GB 46750-2025民用无人驾驶航空器系统运行识别规范
- 麻醉睡眠门诊科普
- 电力绝缘胶带施工方案
- 预防性试验收费标准全解析(2025版)
- 三一旋挖打斜桩施工方案
- 国开《广告调查与预测》形考作业1-4答案
评论
0/150
提交评论