版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届云南省西盟县第一中学高二数学第一学期期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆与圆,则圆M与圆N的位置关系是()A.内含 B.相交C.外切 D.外离2.若数列的通项公式为,则该数列的第5项为()A. B.C. D.3.已知椭圆的中心为,一个焦点为,在上,若是正三角形,则的离心率为()A. B.C. D.4.有关椭圆叙述错误的是()A.长轴长等于4 B.短轴长等于4C.离心率为 D.的取值范围是5.某商场开通三种平台销售商品,五一期间这三种平台的数据如图1所示.该商场为了解消费者对各平台销售方式的满意程度,用分层抽样的方法抽取了6%的顾客进行满意度调查,得到的数据如图2所示.下列说法正确的是()A.样本中对平台一满意的消费者人数约700B.总体中对平台二满意的消费者人数为18C.样本中对平台一和平台二满意的消费者总人数为60D.若样本中对平台三满意消费者人数为120,则6.已知点,在双曲线上,线段的中点,则()A. B.C. D.7.已知椭圆的离心率为,则()A. B.C. D.8.如图已知正方体,点是对角线上的一点且,,则()A.当时,平面 B.当时,平面C.当为直角三角形时, D.当的面积最小时,9.已知双曲线的方程为,则下列关于双曲线说法正确的是()A.虚轴长为4 B.焦距为C.焦点到渐近线的距离为4 D.渐近线方程为10.在空间直角坐标系中,点关于轴的对称点为点,则点到直线的距离为()A. B.C. D.611.若“”是“”的充分不必要条件,则实数m的值为()A.1 B.C.或1 D.或12.设,,,则a,b,c的大小关系为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线:,过焦点作倾斜角为的直线与交于,两点,,在的准线上的投影分别为,两点,则__________.14.已知,,且,则的值是_________.15.已知为椭圆上的一点,,分别为圆和圆上的点,则的最小值为______16.已知椭圆,分别是椭圆的上、下顶点,是左顶点,为左焦点,直线与相交于点,则________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求的值.18.(12分)在2021年“双11”网上购物节期间,某电商平台销售了一款新手机,现在该电商为调查这款手机使用后的“满意度”,从购买了该款手机的顾客中抽取1000人,每人在规定区间内给出一个“满意度”分数,评分在60分以下的视为“不满意”,在60分到80分之间(含60分但不含80分)的视为“基本满意”,在80分及以上的视为“非常满意”.现将他们的评分按,,,,分成5组,得到如图所示的频率分布直方图.(1)求这1000人中对该款手机“非常满意”的人数和“满意度”评分的中位数的估计值.(2)若按“满意度”采用分层抽样的方法从这1000名被调查者中抽取20人,再从这20人中随机抽取3人,记这3人中对该款手机“非常满意”的人数为X.①写出X的分布列,并求数学期望;②若被抽取的这3人中对该款手机“非常满意”的被调查者将获得100元话费补贴,其他被调查者将获得50元话费补贴,请求出这3人将获得的话费补贴总额的期望.19.(12分)在平面直角坐标系xOy中,已知抛物线()的焦点F到双曲线的渐近线的距离为1.(1)求抛物线C的方程;(2)若不经过原点O的直线l与抛物线C交于A、B两点,且,求证:直线l过定点.20.(12分)求下列不等式的解集:(1);(2).21.(12分)如图,在长方体中,底面是正方形,O是的中点,(1)证明:(2)求直线与平面所成角的正弦值22.(10分)如图1,在边长为2的菱形ABCD中,∠BAD=60°,将△BCD沿对角线BD折起到△BDC′的位置,如图2所示,并使得平面BDC′⊥平面ABD,E是BD的中点,FA⊥平面ABD,且FA=.图1图2(1)求平面FBC′与平面FBA夹角的余弦值;(2)在线段AD上是否存在一点M,使得⊥平面?若存在,求的值;若不存在,说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】将两圆方程化为标准方程形式,计算圆心距,和两圆半径的和差比较,可得答案,【详解】圆,即,圆心,圆,即,圆心,则故有,所以两圆是相交的关系,故选:B2、C【解析】直接根据通项公式,求;【详解】,故选:C3、D【解析】根据是正三角形可得的坐标,代入方程后可求离心率.【详解】不失一般性,可设椭圆的方程为:,为半焦距,为右焦点,因为且,故,故,,整理得到,故,故选:D.4、A【解析】根据题意求出,进而根据椭圆的性质求得答案.【详解】椭圆方程化为:,则,则长轴长为8,短轴长为4,离心率,x的取值范围是.即A错误,B,C,D正确.故选:A.5、C【解析】根据扇形图和频率分布直方图判断.【详解】对于A:样本中对平台一满意的人数为,故选项A错误;对于B:总体中对平台二满意的人数约为,故选项B错误;对于C:样本中对平台一和平台二满意的总人数为:,故选项C正确:对于D:对平台三的满意率为,所以,故选项D错误故选:C6、D【解析】先根据中点弦定理求出直线的斜率,然后求出直线的方程,联立后利用弦长公式求解的长.【详解】设,,则可得方程组:,两式相减得:,即,其中因为的中点为,故,故,即直线的斜率为,故直线的方程为:,联立,解得:,由韦达定理得:,,则故选:D7、D【解析】由离心率及椭圆参数关系可得,进而可得.【详解】因为,则,所以.故选:D8、D【解析】建立空间直角坐标系,利用空间向量法一一计算可得;【详解】解:由题可知,如图令正方体的棱长为1,建立空间直角坐标系,则,,,,,,,所以,因为,所以,所以,,,,设平面的法向量为,则,令,则,,所以对于A:若平面,则,则,解得,故A错误;对于B:若平面,则,即,解得,故B错误;当为直角三角形时,有,即,解得或(舍去),故C错误;设到的距离为,则,当的面积最小时,,故正确故选:9、D【解析】根据双曲线的性质逐一判断即可.【详解】在双曲线中,焦点在轴上,,,,所以虚轴长为6,故A错误;焦距为,故B错误;渐近线方程为,故D正确;焦点到渐近线的距离为,故C错误;故选:D.10、C【解析】按照空间中点到直线的距离公式直接求解.【详解】由题意,,,的方向向量,,则点到直线的距离为.故选:C.11、B【解析】利用定义法进行判断.【详解】把代入,得:,解得:或.当时,可化为:,解得:,此时“”是“”的充要条件,应舍去;当时,可化为:,解得:或,此时“”是“”的充分不必要条件.故.故选:B12、A【解析】构造函数,求导判断其单调性即可【详解】令,,令得,,当时,,单调递增,,,,,,,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设,则,将直线方程与抛物线方程联立,结合韦达定理即得.【详解】由抛物线:可知则焦点坐标为,∴过焦点且斜率为的直线方程为,化简可得,设,则,由可得,所以则故答案为:14、【解析】根据空间向量可得,结合计算即可.【详解】由题意知,,所以,解得.故答案:315、8【解析】根据椭圆的定义、点到圆上距离的最小值,即可得到答案;【详解】设为椭圆的左右焦点,则,等号成立,当共线,共线,的最小值为,故答案为:16、##【解析】先求出顶点和焦点坐标,求出直线直线与的斜率,利用到角公式求出的正切值,进而求出正弦值.【详解】由可得:,所以,,,,故,由到角公式得:,其中,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)14海里小时;(2).【解析】(1)由题意知,,,.在△中,利用余弦定理求出,进而求出渔船甲的速度.(2)在△中,,,,,由正弦定理,即可解出的值.【小问1详解】(1)依题意,,,,.在△中,由余弦定理,得.解得.故渔船甲的速度为海里小时.即渔船甲的速度为14海里小时.【小问2详解】在△中,因为,,,,由正弦定理,得,即.值为.18、(1)65分(2)①分布列答案见解析,数学期望:;②172.5元【解析】(1)由图可知中位数在第二组,则设中位数为,从而得,解方程可得答案,(2)①由题意可求得“不满意”与“基本满意”的用户应抽取17人,“非常满意”的用户应抽取3人,则X的可能取值分别为0,1,2,3,然后求出对应的概率,从而可求得其分布列和期望,②设这3人获得的话费补贴总额为Y,则,然后由①结合期望的性质可求得答案【小问1详解】这1000人中对该款手机“非常满意”的人数为.由频率分布直方图可得,得分的中位数为,则,解得,所以中位数为65分.【小问2详解】①若按“满意度”采用分层抽样的方法从这1000名被调查者中抽取20人,则“不满意”与“基本满意”的用户应抽取人,“非常满意”的用户应抽取人,X的可能取值分别为0,1,2,3,,,,,则X的分布列为X0123P故.②设这3人获得的话费补贴总额为Y,则(元),所以元,故这3人将获得的话费补贴总额的期望为172.5元.19、(1)(2)证明见解析【解析】(1)求出双曲线的渐近线方程,由点到直线距离公式可得参数值得抛物线方程;(2)设直线方程为,,直线方程代入抛物线方程后应用韦达定理得,代入可得值,得定点坐标【小问1详解】已知双曲线的一条渐近线方程为,即,抛物线的焦点为,所以,解得(因为),所以抛物线方程为;【小问2详解】由题意设直线方程为,设由得,,,又,所以,所以,直线不过原点,,所以所以直线过定点20、(1)(2)【解析】(1)根据一元二次不等式的解法求得不等式的解集.(2)根据分式不等式的解法求得不等式的解集.【小问1详解】不等式等价于,解得.∴不等式的解集为.【小问2详解】不等式等价于,解得或.∴不等式的解集为.21、(1)证明见解析(2)【解析】(1)以A为坐标原点,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,令,可得的坐标,再求数量积可得答案;(2)求出平面的法向量、的坐标,由线面角的向量求法可得答案.【小问1详解】在长方体中,以A为坐标原点,的方向分别为x,y,z轴的正方向,建立如图所示的空间直角坐标系不妨令,则,,因为,所以【小问2详解】由(1)可知,,,设平面的法向量,则令,得,设直线与平面所成的角,则.22、(1)(2)不存在,理由见解析【解析】(1)利用垂直关系,以点为原点,建立空间直角坐标系,分别求平面和平面的法向量和,利用公式,即可求解;(2)若满足条件,,利用向量的坐标表示,判断是否存在点满足.【小问1详解】∵,E为BD的中点∴CE⊥BD,又∵平面⊥平面ABD,平面平面,⊥平面,∴⊥平面ABD,如图以E原点,分别以EB、AE、EC′所在直线为x轴、y轴、z轴建立空间直角坐标系,则B(1,0,0),A(0,-,0),D(-1,0,0),F(0,-,2),(0,0,),∴=(-1,-,2),=(-1,0,),=(1,,0),设平面的法向量为=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年江苏省苏州市检察院书记员考试试题及答案
- 2026年中共二大会址纪念馆招聘派遣制讲解员3名备考题库及一套完整答案详解
- 2025年张家港市妇幼保健院自主招聘编外合同制卫技人员备考题库完整答案详解
- 2026年中信建投证券股份有限公司湖南分公司招聘备考题库及参考答案详解一套
- 2026年北仑区交通运输局编外人员公开招聘备考题库有答案详解
- 2026年中新镇福和希望小学招聘备考题库及参考答案详解
- 2026年东至县机关事务服务中心招聘司勤人员备考题库及答案详解一套
- 2026年中远海运物流供应链有限公司西南分公司招聘备考题库及答案详解1套
- 2026年哈尔滨德强学校招聘备考题库及完整答案详解一套
- 2026年国家电投集团氢能科技发展有限公司招聘备考题库及1套完整答案详解
- 2025年河南体育学院马克思主义基本原理概论期末考试笔试题库
- 2026年中国铁路上海局集团有限公司招聘普通高校毕业生1236人备考题库及答案详解1套
- 2026年上海市普陀区社区工作者公开招聘备考题库附答案
- 买房分手协议书范本
- 门窗安装专项施工方案
- 招聘及面试技巧培训
- 贵州兴义电力发展有限公司2026年校园招聘考试题库附答案
- 2025年水果连锁门店代理合同协议
- 耐克加盟协议书
- 朱棣课件教学课件
- 农业推广计划课件
评论
0/150
提交评论